PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regularity and stability of optimal controls of nonstationary Navier-Stokes equations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The regularity and stability of optimal controls of nonstationary Navier-Stokes equations are investigated. Under suitable assumptions every control satisfying first-order necessary conditions is shown to be a continuous function in both space and time. Moreover, the behaviour of a locally optimal control under certain perturbations of the cost functional and the state equation is investigated. Lipschitz stability is proven provided a second-order sufficient optimality condition holds.
Rocznik
Strony
387--409
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • Institut fur Mathematik Technische Universitat Berlin Str. des 17. Juni 136, D-10623 Berlin, Germany
Bibliografia
  • Abergel, F. and Temam, R. (1990) On some control problems in fluid mechanics. Theoret. Comput. Fluid Dynam. 1, 303–325.
  • Adams, R.A. (1978) Sobolev Spaces. Academic Press, San Diego.
  • Casas, E. (1993) An optimal control problem governed by the evolution Navier-Stokes equations. In: S. S. Sritharan, ed., Optimal Control of Viscous Flows, Frontiers in applied mathematics. SIAM, Philadelphia.
  • Constantin, P. and Foias, C. (1988) Navier-Stokes Equations. The University of Chicago Press, Chicago.
  • Dontchev, A.L., Hager, W.W., Poore, A.B. and Yang, B. (1995) Optimality, stability, and convergence in optimal control. Appl. Math. Optim. 31, 297–326.
  • Fattorini, H.O. and Sritharan, S. (1994) Necessary and sufficient conditions for optimal controls in viscous flow problems. Proc. Royal Soc. of Edinburgh 124, 211–251.
  • Goldberg, H. and Troltzsch, F. (1998) On a Lagrange-Newton method for a nonlinear parabolic boundary control problem. Optimization Methods and Software 8, 225–247.
  • Gunzburger, M.D., editor (1995) Flow Control. Springer, New York.
  • Gunzburger, M.D. and Manservisi, S. (1999) The velocity tracking problem for Navier-Stokes flows with bounded distributed controls. SIAM J. Control Optim. 37, 1913–1945.
  • Gunzburger, M.D. and Manservisi, S. (2000) Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal. 37, 1481–1512.
  • Hintermuller, M. and Hinze, M. (2003) A SQP-semi-smooth Newton-type algorithm applied to control of the instationary Navier-Stokes system subject to control constraints. Technical Report TR03-11, Department of Computational and Applied Mathematics, Rice University, submitted.
  • Hinze, M. (2002) Optimal and Instantaneous Control of the Instationary Navier-Stokes Equations. Habilitation, TU Berlin.
  • Hinze, M. and Kunisch, K. (2001) Second-order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40, 925–946.
  • Kinderlehrer, D. and Stampacchia, G. (1980) An Introduction to Variational Inequalities and Their Applications. Academic Press, New York.
  • Ladyzhenskaya, O.A., Solonnikov, V.A. and Ural’tseva, N.N. (1968) Linear and Quasilinear Equations of Parabolic Type. AMS Publications, Providence.
  • Lions, J.L. and Magenes, E. (1972) Non-homogeneous Boundary Value Problems and Applications, volume I. Springer, Berlin.
  • Malanowski, K. and Troltzsch, F. (2000) Lipschitz stability of solutions to parametric optimal control for elliptic equations. Control and Cybernetics, 29, 237–256.
  • Robinson, S.M. (1980) Strongly regular generalized equations. Mathematics of Operation Research 5, 43–62.
  • Rosch, A. and Wachsmuth, D. (2005) Imbeddings of abstract functions with application to an optimal control problem. Journal for Analysis and its Applications 24, 103–116.
  • Roubıcek, T. and Troltzsch, F. (2002) Lipschitz stability of optimal controls for the steady-state Navier-Stokes equations. Control and Cybernetics 32 (3), 683–705.
  • Sohr, H. (2001) The Navier-Stokes Equations. Birkhauser, Basel.
  • Sritharan, S. (1991) Dynamic programming of the Navier-Stokes equations. Systems & Control Letters, 16, 299–307.
  • Temam, R. (1979) Navier-Stokes Equations. North Holland, Amsterdam.
  • Temam, R. (1995) Navier-Stokes Equations and Nonlinear Functional Analysis. SIAM, Philadelphia, 2nd edition.
  • Triebel, H. (2002) Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers. Revista Matematica Complutense 15, 475–524.
  • Troltzsch, F. (1996) A stability theorem for linear-quadratic parabolic control problems. In: E. Casas, ed., Control of Partial Differential Equations and Applications, Lecture Notes in Pure and Appl. Math. 174, Dekker, New York, 287–296.
  • Troltzsch, F. (2000) Lipschitz stability of solutions of linear-quadratic parabolic control problems with respect to perturbations. Dyn. Contin. Discrete Impulsive Syst. 7, 289–306.
  • Troltzsch, F. and Wachsmuth, D. (2004) Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations. ESAIM: COCV, to appear.
  • von Wahl, W. (1977) Instationary Navier-Stokes equations and parabolic systems. Pacific J. Math. 72 (2), 557–569.
  • von Wahl, W. (1980) Regularitatsfragen fur die instationaren Navier-Stokesschen Gleichungen in hoheren Dimensionen. J. Math. Soc. Japan 32 (2), 263–283.
  • von Wahl, W. (1985) The Equations of Navier-Stokes and Abstract Parabolic Equations. Vieweg, Braunschweig.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0095
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.