Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper refers to the problem of Michell (1904) of finding the lightest fully stressed structures, composed of possibly infinite number of members, trasmitting a given load to a support forming a circle. The point load can be located within or outside the circle. The known analysis by Hemp (1973) is enhanced here by disclosing the explicit formulae for the weights of the ribs and the interior (fibrous domain). The optimal weight can be found by two manners: by applying the primal integral formula involving the density of the reinforcement or by computing the work of the load on the adjoint displacement. One of the aims of the paper is to show that both these formulae are equivalent. This identity is essential since in the case of point loads the equivalence of the primal and dual formulations has not been proved till now. Tlie analytically found layouts are confirmed by analysis of trusses (of finite number of joints) approximating the exact Michell-like solutions.
Czasopismo
Rocznik
Tom
Strony
227--253
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Świętokrzyska 21, 00-049 Warszawa
autor
- Warsaw University of Technology Faculty of Civil Engineering, Institute of Structural Mechanics al.Armii Ludowej 16, 00-637 Warsaw, Poland
Bibliografia
- Achtziger, W. (1997) Topology optimization of discrete structures. An introduction in view of computational and non-smooth aspects. In: Rozvany, G.I.N., ed., Topology Optimization in Structural Mechanics. Springer, Wien, 57-100.
- Allaire, G. and Kohn, R.V. (1993) Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur. J. Mech. A/Solids 12, 839-878.
- Chan, H.S.Y. (1967) Half-plane slip-line fields and Michell structures. Q. J. Mech. Appl. Math. 20, 453-469.
- Chan, H.S.Y. (1975) Symmetric plane frameworks of least weight. In: A. Sawczuk and Z. Mroz, eds., Optimization in Structural Design. Springer, Berlin, 313-326.
- Cherkaev, A. (2000) Variational Methods for Structural Optimization. Springer, New York.
- Czarnecki, S. (2003) Compliance optimization of the truss structures. Comp. Ass. Mech. Eng. Sci. 10, 117-137.
- Golay, F. and Seppecher, P. (2001) Locking materials and the topology of optimal shapes. Eur. J. Mech. A/Solids 20, 631-644.
- Graczykowski, C. and Lewiński, T. (2003) Optimal Michell’s cantilever transmitting a given point load to a circular support. Analysis of the exact solution. In: W. Szcześniak, ed., Theoretical Foundations of Civil Engineering-XI. Oficyna Wydawnicza PW, Warszawa, 351-368.
- Hemp, W.S. (1973) Optimum Structures. Oxford, Clarendon Press.
- Lewiński, T. (2004) Michell structures formed on surfaces of revolution. Struct. Multidisc. Optimiz. 28, 20-30.
- Lewiński, T. and Telega, J.J. (2000) Plates, laminates and shells. Asymptotic analysis and homogenization. World Scientific, Singapore, New Jersey, London, Hong Kong.
- Lewiński, T. and Telega, J.J. (2001) Michell-like grillages and structures with locking. Arch. Mech. 53, 303-331.
- Lewiński, T., Zhou, M. and Rozvany, G.I.N. (1994) Extended exact solutions for least-weight truss layouts – Part I: Cantilever with a horizontal axis of symmetry. Int. J. Mech. Sci. 36, 375-398; Part II: Unsymmetric cantilevers, Int. J. Mech. Sci. 36, 399-419.
- Mazurkiewicz, Z.E. (1995) Thin Elastic Shells. Oficyna Wydawnicza PW, Warszawa(in Polish).
- Michell, A.G.M. (1904) The limits of economy of material in frame structures. Phil. Mag. 8, 589-597.
- Novozhilov, V.V. (1970) Thin Shell Theory. Walters-Nordhoff, Groningen, Russian Edition: Sudpromgiz, Leningrad 1962.
- Rozvany, G.I.N. (1976) Optimal Design of Flexural Systems: Beams, Grillages, Slabs, Plates and Shells. Oxford: Pergamon Press.
- Strang, G. and Kohn, R.V. (1983) Hencky-Prandtl nets and constrained Michell trusses. Comp. Meth. Appl. Mech. Engrg. 36, 207-222.
- Vekua, I.N. (1967) New Methods for Solving Elliptic Equations. North-Holland, Amsterdam.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0088