PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A regularized Newton method in electrical impedance tomography using shape Hessian information

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper is concerned with the identification of an obstacle or void of different conductivity included in a two-dimensional domain by measurements of voltage and currents at the boundary. We employ a reformulation of the given identification problem as a shape optimization problem as proposed by Roche and Sokolowski (1996). It turns out that the shape Hessian degenerates at the given hole which gives a further hint on the ill-posedness of the problem. For numerical methods, we propose a preprocessing for detecting the barycentre and a crude approximation of the void or hole. Then, we resolve the shape of the hole by a regularized Newton method.
Rocznik
Strony
203--225
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
  • Weierstraß Institut fur Angewandte Analysis und Stochastik Mohrenstr. 39, 10117 Berlin, Germany
autor
  • Institut fur Informatik und Praktische Mathematik, Christian–Albrechts–Universitat zu Kiel Olshausenstr. 40, 24098 Kiel, Germany
Bibliografia
  • Akduman, I. and Kress, R. (2002) Electrostatic imaging via conformalmapping. Inverse Problems 18, 1659–1672.
  • Alessandrini, G., Isakov, V. and Powell, J. (1995) Local uniqueness in the inverse problem with one measurement. Trans. Am. Math. Soc. 347, 3031–3041.
  • Bruhl, M. (2001) Explicit characterization of inclusions in electrical impedance tomography. SIAM J. Math. Anal. 32 (6), 1327–1341.
  • Bruhl, M. and Hanke, M. (2000) Numerical implementation of two noniterative methods for locating inclusions by impedance tomography. Inverse Problems 16 (4), 1029–1042.
  • Chapko, R. and Kress, R. (2003) A hybrid method for inverse boundary value problems in potential theory To appear.
  • Dambrine, M. and Pierre, M. (2000) About stability of equilibrium shapes. M2AN 34 (4), 811–834.
  • Dambrine, M. (2000) Hessiennes de forme et stabilite des formes critiques. PhD Thesis, Ecole Normale Superieure de Cachan.
  • Dambrine, M. (2002) On variations of the shape Hessian and sufficient conditions for the stability of critical shapes. RACSAM, Rev. R. Acad. Cien. Serie A. Mat. 96 (1), 95–121.
  • Delfour, M. and Zolesio, J.-P. (2001) Shapes and Geometries. SIAM, Philadelphia.
  • Eppler, K. (2000) Optimal shape design for elliptic equations via BIE-methods. J. of Applied Mathematics and Computer Science 10, 487–516.
  • Eppler, K. (2000) Boundary integral representations of second derivatives in shape optimization. Discussiones Mathematicae (Differential Inclusion Control and Optimization) 20, 63–78.
  • Eppler, K. and Harbrecht, H. (2003a) Numerical solution of elliptic shape optimization problems using wavelet-based BEM. Optim. Methods Softw. 18, 105–123.
  • Eppler, K. and Harbrecht, H. (2003b) 2nd Order Shape Optimization usingWavelet BEM. Preprint 06-2003, TU Berlin. To appear in Optim. Methods Softw.
  • Eppler, K. and Harbrecht, H. (2003c) Exterior Electromagnetic Shaping using Wavelet BEM. Preprint 13-2003, TU Berlin. To appear in Math. Meth. Appl. Sci.
  • Eppler, K. and Harbrecht, H. (2003d) Fast wavelet BEM for 3d electromagnetic shaping. Bericht 03-9, Berichtsreihe des Mathematischen Seminars der Christian-Albrechts-Universitat zu Kiel. To appear in Appl. Numer. Math.
  • Eppler, K. and Harbrecht, H. (2004a) Shape optimization for 3D electrical impedance tomography. Preprint 963, WIAS Berlin. Submitted for publication.
  • Eppler, K. and Harbrecht, H. (2004b) Efficient Treatment of Stationary Free Boundary Problems. Preprint 965, WIAS Berlin. Submitted for publication.
  • Friedman, A. and Isakov, V. (1989) On the uniqueness in the inverse conductivity problem with one measurement. Indiana Univ. Math. J. 38, 563–579.
  • Fujii, N. and Goto, Y. (1990) Second order numerical method for domain optimization problems. Journal of Optimization Theory and Applications 67 (3), 533–550.
  • Gill, P.E., Murray, W. and Wright, M.H. (1981) Practical Optimization. Academic Press, New York.
  • Grossmann, Ch. and Terno, J. (1993) Numerik der Optimierung. Teubner, Stuttgart.
  • Hackbusch, W. (1989) Integralgleichungen. B.G. Teubner, Stuttgart.
  • Hettlich, F. and Rundell, W. (1998) The determination of a discontinuity in a conductivity from a single boundary measurement. Inverse Problems 14, 67–82.
  • Hsiao, G. and Wendland, W. (1977) A finite element method for some equations of first kind. J. Math. Anal. Appl. 58, 449–481.
  • Novruzi, A. and Roche, J.-R. (1995) Second derivatives, Newton method, application to shape optimization. INRIA-report No. 2555.
  • Novruzi, A. (1997) Contribution en Optimisation des Formes et Applications. PHD Thesis, Nancy.
  • Novruzi, A. and Roche, J.-R. (2000) NewtonMethod in 3-dimensional shape optimization problems. Application to electromagnetic casting. BIT 40 (1), 102–120.
  • Kress, R. (1989) Linear Integral Equations. Springer-Verlag, Berlin-Heidelberg.
  • Mazya, V.G. and Shaposhnikova, T.O. (1985) Theory of multipliers in spaces of differentiable functions. Pitman, Boston. Monographs and Studies in Mathematics 23. Pitman Advanced Publishing Program. Boston - London - Melbourne: Pitman Publishing Inc. XIII.
  • Roche, J.-R. and Sokolowski, J. (1996) Numerical methods for shape identification problems. Control Cybern. 25, 867–894.
  • Sokolowski, J. and Zolesio, J.-P. (1992) Introduction to Shape Optimization. Springer, Berlin.
  • Triebel, H. (1983) Theory of Function Spaces. Birkhauser, Basel-Boston-Stuttgart.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0087
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.