Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The topological sensitivity analysis consists in studying the behavior of a shape functional when modifying the topology of the domain. In general, the perturbation under consideration is the creation of a small hole. In this paper, the topological asymptotic expansion is obtained for the Laplace equation with respect to the insertion of a short crack inside a plane domain. This result is illustrated by some numerical experiments in the context of crack detection.
Czasopismo
Rocznik
Tom
Strony
81--101
Opis fizyczny
Bibliogr. 36 poz., wykr.
Twórcy
autor
- Fraunhofer-Institut fur Techno- und Wirtschaftsmathematik Gottlieb-Daimler-Str. Geb. 49, D-67663 Kaiserslautern, Germany
autor
- ENIT-LAMSIN, BP 37 1002 Tunis Belvedere, Tunisie
autor
- Laboratoire MIP (UMR 5640), Universite Paul Sabatier, UFR MIG, 118, route de Narbonne, 31062 Toulouse cedex 4, France
Bibliografia
- Alessandrini, G. and Diaz Valenzuela, A. (1996) Unique determination of multiple cracks by two measurements. SIAM J. Control Optim. 34 (3), 913–921.
- Alessandrini, G. Beretta, E. and Vessela, S. (1996) Determining linear cracks by boundary measurements. SIAM J. Math. Anal. 27 (2), 361–375.
- Allaire, G. (2002) Shape Optimization by the Homogenization Method. Applied Mathematical Sciences 146, Springer Verlag, New York.
- Andrieux, S. and Ben Abda, A. (1996) Identification of planar cracks by complete overdetermined data: inversion formulae. Inverse Problems 12, 553–563.
- Argatov, I.I. and Sokołowski, J. (2003) Asymptotics of the energy functional of the Signorini problem under a small singular perturbation of the domain. Computational Mathematics and Mathematical Physics 43, 710–724.
- Baratchart, L., Leblond, J., Mandrea, F. and Saaf, B.F. (1999) How can meromorphic approximation help to solve some 2D inverse problems for the Laplacian. Inverse Problems 15, 79–90.
- Ben Abda, A., Ben Ameur, H. and Jaoua, M. (1999) Identification of 2D cracks by elastic boundary measurements. Inverse Problems, 15, 67–77.
- Ben Abda, A., Kallel, M., Leblond, J. and Marmorat, J.P. (2002) Line-segment cracks recovery from incomplete boundary data. Inverse Problems 18, 1057–1077.
- Bendsøe, M. (1996) Optimal topology design of continuum structure: an introduction. Technical report, Departement of Mathematics, Technical University of Denmark, DK2800 Lyngby, Denmark, September 1996.
- Bruhl, M., Hanke, M. and Pidcock, M. (2001) Crack detection using electrostatic measurements. Math. Model. Numer. Anal. 35, 595–605.
- Bryan, M. and Vogelius, M.S. (2004) A review of selected works on crack identification. In: C. Croke, I. Lasiecka, G. Uhlmann and M.S. Vogelius, eds., IMA Volumes in Mathematics and Its Applications 137. Springer Verlag, Berlin, 25-46.
- Dautray, R. and Lions, J.-L. (1987) Analyse mathematique et calcul numerique pour les sciences et les techniques. Masson, Collection CEA.
- Friedman, A. and Vogelius, M.S. (1989) Determining cracks by boundary measurements. Indiana Univ. Math. J. 38 (3), 527–556.
- Friedman, A. and Vogelius, M.S. (1989) Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem of continuous dependence. Arch. Rational Mech. Anal. 105 (4), 299–326.
- Garreau, S., Guillaume, Ph. and Masmoudi, M. (2001) The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control. Optim. 39 (6), 1756–1778.
- Giroire, J. and Nedelec, J.-C. (1978) Numerical solution of an exterior Neumann problem using a double layer potentiel. Mathematics of Computation 32(144), 973–990.
- Guillaume, Ph. and Sididris, K. (2002) The topological asymptotic expansion for the Dirichlet problem. SIAM J. Control. Optim. 41 (4), 1052–1072.
- Guillaume, Ph. and Sididris, K. (2004) Topological sensitivity and shape optimization for the Stokes equations. SIAM J. Control Optim. 43 (1), 1-31.
- Jaoua, M. (1977) Equations integrales pour un probleme singulier dans le plan. These, Universite Pierre et Marie Curie.
- Khludnev, A. and Kovtunenko, V. (2000) Analysis of Cracks in Solids. WIT Press, Southampton-Boston.
- Kohn, R. and Vogelius, M. (1987) Relaxation of a variational method for impedance computed tomography. Comm. Pure Appl. Math. 40 (6), 745–777.
- Kubo, S. and Ohji, K. (1990) Inverse problems and the electric potential computed tomography method as one of their application, Mechanical Modeling of New Electromagnetic Materials.
- Le Roux, M.N. (1974) Resolution numerique du probleme du potentiel dans le plan par une methode variationnelle d’elements finis. These, Universite de Rennes.
- Lions, J.L. and Magenes E. (1968) Problemes aux limites non homogenes et applications, Vol. 1. Dunod.
- Masmoudi, M. (2001) The Topological Asymptotic. In: R.Glowinski, H. Kawarada, J.Pesiaux, eds., Computational Methods for Control Applications. GAKUTO International Series. Math. Sci. Appl. 16, 53-72.
- Mazya, V. and Nazarov, S. (1987, 1988) Asymptotic behavior of energy integrals under small perturbations of the boundary near corner and conic points. Trudy Moscov. Mat. Obshch. 50, 79–129; translation in Trans. Moskow Math. Soc. 50, 77–127.
- Mazya, V., Nazarov, S. and Plamenevskij, B. (2000) Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Operator Theory, Advances and Applications 111/112, Birkhauser Verlag.
- Murat, F. and Simon, J. (1976) Sur le controle par un domaine geometrique. These d’etat, Paris, 1976.
- Nazarov, S.A. and Sokołowski, J. (2003) Asymptotic analysis of shape functionals. J. Math. Pures Appl. (9) 82, 125–196.
- Nishimura, N. and Kobayashi, S. (1991) A boundary integral equation method for an inverse problem related to crack detection. Int. J. Num. Methods Engrg. 32, 1371–1387.
- Polya, G. and Szego, G. (1951) Isoperimetric inequalities in Mathematical Physics. Annals of Mathematical Studies 27, Princeton University Press.
- Samet, B., Amstutz, S. and Masmoudi, M. (2003) The topological asymptotic for the Helmholtz equation. SIAM J. Control. Optim. 42 (5), 1523–1544.
- Santosa, F. and Vogelius, M. (1991) A computational algorithm to determine cracks from electrostatic boundary measurements. Int. J. Eng. Sci. 29, 917–937.
- Schiffer, S. and Szego, G. (1949) Virtual mass and polarization. Trans. Amer. Math. Soc. 67, 130–205.
- Schumacher, A. (1995) Topologieoptimisierung von Bauteilstrukturen unter Verwendung von Lopchpositionierungkrieterien. Thesis, Universitat-Gesamthochschule-Siegen, 1995.
- Sokołowski, J. and Żochowski, A. (1999) On the topological derivative in shape optimization. SIAM J. Control Optim. 37, 1241–1272.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0082