PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hard and soft sub-time-optimal controllers for a mechanical system with uncertain mass

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An essential limitation in using the classical optimal control has been its limited robustness to modeling inadequacies and perturbations. This paper presents the concepts of two practical control structures based on the time-optimal approach, a hard and soft one. The hard structure is defined by the parameters selected in accordance with the rules of the statistical decision theory: however, the soft structure allows additionally for elimination of rapid changes in control values. The object is a basic mechanical system, with uncertain (also non-stationary) mass treated as a stochastic process. The methodology proposed here is of a universal nature and may easily be applied with respect to other elements of uncertainty of time-optimal controlled mechanical systems.
Rocznik
Strony
573--587
Opis fizyczny
Bibliogr. 17 poz., wykr.
Twórcy
autor
  • Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
  • Department of Control Engineering, Aalborg University Fredrik Bajers Vej 7, 9220 Aalborg Ø, Denmark
autor
  • Department of Automatic Control, Cracow University of Technology ul. Warszawska 24, 31-155 Cracow, Poland
autor
  • Department of Automatic Control, Cracow University of Technology ul. Warszawska 24, 31-155 Cracow, Poland
Bibliografia
  • Athans, M. and Falb, P.L. (1966) Optimal Control. McGraw-Hill, New York.
  • Berger, J.O. (1980) Statistical Decision Theory. Springer-Verlag, New York.
  • Friedland, B. (1996) Advanced Control System Design. Prentice-Hall, Englewood Cliffs.
  • Isidori, A. (1995) Nonlinear Control Systems. Springer-Verlag, London.
  • Khalil, H.K. (1996) Nonlinear Systems. Prentice-Hall, Englewood Cliffs.
  • Kulczycki, P. (1996a) Time-Optimal Stabilization of a Discontinuous and Non-Autonomous Dynamic Object. Control and Cybernetics 25 (4), 707–720.
  • Kulczycki, P. (1996b) Almost Certain Time-Optimal Positional Control. IMA Journal of Mathematical Control & Information 13 (1), 63–77.
  • Kulczycki, P. (1996c) Some Remarks on Solutions of Discontinuous Differential Equations Applied in Automatic Control. Industrial Mathematics 46 (2), 119–128.
  • Kulczycki, P. (2000) Fuzzy Controller for Mechanical Systems. IEEE Transactions on Fuzzy Systems 8 (5), 645–652.
  • Kulczycki, P. (2001) An Algorithm for Bayes Parameter Identification. Journal of Dynamic Systems, Measurement, and Control 123 (4), 611–614.
  • Kulczycki, P. and Wisniewski, R. (2002) Fuzzy Controller for a System with Uncertain Load. Fuzzy Sets and Systems 131 (2), 185–195.
  • Kulczycki, P., Wisniewski, R., Kowalski, P. and Krawiec, K. (2004) Soft time-suboptimal controlling structure for mechanical systems. 4rd International Workshop on Robot Motion and Control, Puszczykowo (Poland), 17-20 June 2004, 237–242.
  • Lyshevski, S.E. (2001) Control Systems Theory with Engineering Applications. Birkhauser, New York.
  • Sciavicco, L. and Siciliano, B. (1996) Modeling and Control of Robot Manipulators. McGraw-Hill, New York.
  • Schiøler, H. and Kulczycki, P. (1997) Neural Network for Estimating Conditional Distributions. IEEE Transactions on Neural Networks 8 (5),1015–1025.
  • Weinmann, A. (1991) Uncertain Models and Robust Control. Springer-Verlag, Vienna.
  • Zhou, K., Doyle, J.C. and Glover, K. (1996) Robust and Optimal Control. Prentice Hall, Englewood Cliffs.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0070
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.