PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variational formalism applied to control of autonomous switching systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The formalism of the calculus of variations is applied to determine an optimal control of a class of Hybrid Dynamical Systems. This class consists of autonomous switching systems where jumps of the state are taken into account. It is shown that model switching involves discontinuities in the adjoint state of the system. The expression of the gradient of the cost function, with respect to the control, allows for the calculation of an optimal control by implementing a descent method. Au illustrative linear quadratic example is given, which allows to conclude that, the method can be easily implemented.
Rocznik
Strony
535--549
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • Laboratoire SeT, UTBM, 90010 Belfort, France
autor
  • LISA, Universite d’Angers, 62 avenue Notre Dame du Lac 49000 Angers, France
  • LISA, Universite d’Angers, 62 avenue Notre Dame du Lac 49000 Angers, France
autor
  • LISA, Universite d’Angers, 62 avenue Notre Dame du Lac 49000 Angers, France
Bibliografia
  • Andreu, D., Pascal, J.C. and Valette, R. (1995) Interaction of discreteand continuous parts of a batch process control system. Proc. of ADE-DOPS (Analysis and Design of Event-Driven Operation in Process Systems), London.
  • Antsaklis, P.J., Stiver, J.A. and Lemmon, M.D. (1993) Interface and Controller Design for Hybrid Control Systems. Lecture Notes in Computer Science, Hybrid System, Springer-Verlag.
  • Antsaklis, P.J. and Nerode, A. (1998) Hybrid control systems: An introductory discussion to the special issue. IEEE Trans. Autom. Contr. 43 (4), 457, Special issue on hybrid systems.
  • B́erest, P. (1997) Calcul des variations, application a la ḿecanique et a laphysique. Ellipses, Paris.
  • Branicky, M.S. (1995) Studies in Hybrid Systems: Modeling, Analysing, and Control. PhD thesis, Massachussetts Institute of Technology, Cambridge.
  • Branicky, M.S. (1998) Multiple Lyapunov function and others analysis toolsfor switched and hybrid systems. IEEE Trans. Autom. Contr. 43 (4), 475, Special issue on hybrid systems.
  • Brockett, R.W. (1993) Hybrid model for motion control systems. In: H. Trentelman and J. Willems, eds., Essays in Control: Perspectives in the Theoryand Its Applications. Birkhauser, Boston, 29-53.
  • Bryson, A.E. and Ho, Y.C. (1975) Applied Optimal Control. Gin and Co.,Waltham.
  • Ćebron, B., Sechilariu, M. and Burger J. (1999a) Optimal control of hybrid dynamical systems with hysteresis. Proc. of ECC, Karlsruhe.
  • Ćebron, B., Sechilariu, M. and Burger J. (1999b) Comparison of two calculation methods of the optimal switching instants of a hybrid dynamical system, SMC’99. Proc. of IEEE-SMC, 165-170.
  • Ciarlet, P.G. (1990) Introduction a l’analyse nuḿerique matricielle et a l’optimisation. Masson, Paris.
  • Daubas, B., Pages, A. and Pingaud, H. (1994) Combined simulation of hybrid processes. Proc. of IEEE-SMC, 320.
  • Hedlund, S. and Rantzer, A. (2002) Convex Dynamic Programming for Hybrid Systems, IEEE Trans. on Autom. Contr. 47 (9), 1536-1540.
  • Nerode, A. and Kohn, W. (1993) Models for hybrid systems: Automata, topologies, controllability, observability. Lecture Notes in Computer Science, Hybrid System, Springer-Verlag.
  • Pogu, M. and Souza de cursi, J.E. (1994) Global Optimization by Random Perturbation of the Gradient Method with a Fixed Parameter. J. of Global Optimization 5, 159-180.
  • Riedinger, P., Kratz, F., Iung, C. and Zanne, C. (1999) Linear quadratic optimization for hybrid systems. Proc. of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona.
  • Sussmann, H.J. (1999) A maximum principle for hybrid optimal control problems. Proc. of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona.
  • Van Der Schaft, A. and Schumacher, H. (2000) An introduction to Hybrid Dynamical Systems. Lecture Notes in Control and Information Sciences 251, Springer-Verlag.
  • Vinter, R. (1993) Convex duality and nonlinear optimal control. SIAM J. Control and Optimization 31 (2), 518-538.
  • Xu, X. and Antsaklis, P.J. (2003) Optimal Control of Hybrid Autonomous Systems with State Jumps. Proc. of the American Control Conference, Denver, Colorado, USA, 5191-5196.
  • Xu, X. and Antsaklis, P.J. (2004) Optimal Control of Switched Systems Based on Parametrization of the Switching Instants. IEEE Trans. on Autom. Contr. 49 (1).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0067
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.