PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A fuzzy shape database to support conceptual design

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
At the conceptual stage of design, designers only have vague ideas of initial shapes which they gradually refine. These imprecise shapes may be specified by a set of fuzzy shape descriptors which represent the intent of a designer. It is also desirable to be able to save them in a database for future reference or for use as initial shapes for new designs. Most research on fuzzy databases has been focused on theoretical aspects while a fuzzy database is rarely seen in practice, especially in the design area. This paper aims to construct a fuzzy shape database to support shape design by integrating fuzzy data processing and fuzzy querying functions into a conventional database. A possibility-based framework is used for a fuzzy relational database model.
Rocznik
Strony
141--172
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
  • Faculty of Information Technology Queensland University of Technology GPO Box 2434 Brisbane QLD 4001 Australia
autor
  • Faculty of Information Technology Queensland University of Technology GPO Box 2434 Brisbane QLD 4001 Australia
autor
  • Faculty of Information Technology Queensland University of Technology GPO Box 2434 Brisbane QLD 4001 Australia
Bibliografia
  • Baldwin, J.F. (1983) A Fuzzy Relational Inference Language. PergamonPress.
  • Baldwin, J.F., Martin, T.P. and Pilsworth, B.W. (1995) Fril- Fuzzyand Evidential Reasoning in Artificial Intelligence. University of Bristol, UK.
  • Barr, A.H. (1981) Superquadrics and Angle-preserving Transformations. IEEE Computer Graphics and Appl. 1, 11–23.
  • Barr, A.H. (1984) Global and Local Deformations of Solid Primitives. Computer Graphics 18 (3), 21–30.
  • Barr, A.H. (1992) Rigid Physically Based Superquadrics.Graphics Gems III, 137–148.
  • Berkan, R.C. and Trubatch, S.L. (1997 )Fuzzy System Design Principles. IEEE Press, NY.
  • Biederman, I. (1987) Recognition-by-Components: A Theory of Human Image Understanding. Psychological Review 2, 115–147.
  • Bosc, P., Duval, L. and Pivert, O. (2000) Value-Based and Representation-Based Querying of Possibilistic Databases. In: D. Bordogna and G.Pasi, eds., Recent Issues on Fuzzy Databases. Physica-Verlag, Heidelberg-New York.
  • Bosc, P. and Galibourg, M. (1989) Indexing Principles for a Fuzzy Data Base. Information Systems 14 (6), 493–499.
  • Bronsvoort, W.F. (1990) Direct Display Algorithms for Solid Modeling. Delft University Press.
  • Buckles, B. and Petry, F. (1982) Fuzzy Databases and Their Applications .J. Fuzzy Sets and Systems 7, 213–226.
  • Chen, G. (1998) Fuzzy Logic in Data Modeling: Semantics, Constraints, and Database Design. Kluwer Academic Publishers, USA.
  • Chen, G. (1999) Data Models for Dealing with Linguistic and Imprecise Information. In: L. A. Zadeh and J. Kacprzyk, eds.,Computing with Wordsin Information/Intelligent Systems 2: Applications. Physica-Verlag, Heidelberg, 325–344.
  • Cybenko, G., Bhasin, A. and Cohen, K.D. (1997) Pattern recognition of 3D CAD objects: Towards an electronic yellow pages of mechanical parts. Smart Engineering Systems Design 1, 1–13.
  • Dickinson, S., Biederman, I., Pentland, A., Eklundh, J.-O.,Bergevin,R. and Munck-Faiwood, R. (1993) The Use of Geons for Generic 3-D Object Recognition. Proc. International Joint Conference on Artificial Intelligence (IJCAI),Chambery, France, 1693–1699.
  • Dickinson, S.J. (1994) Integrating Qualitative and Quantitative Shape Recovery .International Journal of Computer Vision 13 (3), 311–330.
  • Hardwick, M., Morris, K.C., Spooner, D.L., Rando, T. and Denno, P.(2000) Lessons learned developing protocols for the industrial virtual enterprise.Computer Aided Design 32 (2), 159–166.
  • Kacprzyk, J. and Zadrożny, S. (1997) Flexible Querying Using Fuzzy Logic: An implementation for Microsoft ACCESS. In: T. Andreasen, H.Christiansen and H.L. Larsen, eds., Flexible Query Answering Systems. Kluwer Academic Publishers, 247–275.
  • Klir, G. and Yuan, B. (1995) Fuzzy Sets and Fuzzy Logic.Prentice Hall, New Jersey.
  • Kriegel, H.-P. (1993) Handling Geometric Objects with Free Form Curvesin Spatial Databases. 2nd ACM Symposium on Solid Modeling and Applications, Montreal, Canada.
  • Kruse, R., Gebhardt, J. and Klawonn, F. (1994) Foundations of Fuzzy Systems.John Wiley & Sons Ltd., England.
  • Lu, G. (1999) Multimedia database management systems. Artech House, Boston-London.
  • Mantyla, M. (1988) An Introduction to Solid Modeling. Computer Science Press, Inc., U.S.A.
  • McFadden, F.R., Hoffer, J.A. and Prescott, M.B. (1999) Modern data-base management. Addison-Wesley, Reading-Harlow.
  • McWherter, D., Peabody, M., Shokoufandeh A.C. and Regli, W.(2001) Database techniques for archival of solid models. 6th ACM Symposium on Solid Modeling and Applications. Ann Arbor, Michigan.
  • Petry, F.E. and Bosc, P. (1996) Fuzzy Databases: Principles and Applications. Kluwer Academic Publishers, USA.
  • Pham, B. and Zhang, J. (2000) A Fuzzy Shape Specification System to Support Design for Aesthetics. In: L. Reznik, ed., Soft Computing in Measurement and Information Acquisition. Physica-Verlag, Heidelberg, in print.
  • Piegl, L.A. and Tiller, W. (1997) The NURBS Book.Springer, Berlin-New York.
  • Pons, O., Medina, J.M., Cubero, J.C .and Vila, M.A. (1997) A Fuzzy Deductive Relational Database. In: T. Andreasen, H. Christiansen, and H. L. Larsen, eds., Flexible Query Answering Systems. Kluwer Academic Publishers, 79–101.
  • Prade, H. and Testemale, C. (1984) Generalizing Database Relational Algebra for the Treatment of Incomplete/Uncertain Information and Vague Queries. Information Sciences 34, 115–143.
  • Prade, H. and Testemale, C. (1987) Representation of Soft Constraints and Fuzzy Attribute Values by Means of Possibility Distributions in Data-bases. In: J. Bezdek, ed., Analysis of Fuzzy Information - vol. 2: ArtificialIntelligence and Decision Systems. CRC Press, 213–229.
  • Ruspini, E.H., Bonissone, P.P. and Pedrycz, W. (1998) Handbook of fuzzy computation. Institute of Physics Pub., Bristol-Philadelphia.
  • Shah, J. J.and M̈antyl̈a, M. (1995) Parametric and Feature-Based CAD/CAM. John Wiley & Sons, Inc., NY.
  • Umano, M. (1982) Freedom-0: A Fuzzy Database System. In: Dubois D.,Prade H. and R. Yager, eds.,Fuzzy Sets for Intelligent Systems. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 667–675.
  • Umano, M. (1983) Retrieval from Fuzzy Database by Fuzzy Relational Algebra. In: E. Sanchez and M. M. Gupta, eds., Fuzzy Information, Knowledge Representation and Decision Analysis. Pergmon Press, 1–6.
  • Vila, M.A., Cubero, J.C., Medina, J.M.and Pons, O. (1995) Logic and Fuzzy Relational Databases: A New Language and a New Definition. In:P. Bosc and J. Kacprzyk, eds.,Fuzziness in Database Management Systems.Physica-Verlag, Heidelberg, 114–138.
  • Wu, X., Ichikawa, T. and Cercone, N. (1996) Knowledge-Base Assisted Database Retrieval Systems. World Scientific, River Edge, NJ.
  • Yager, R.R. and Filev, D.P. (1994) Essentials of Fuzzy Modeling and Control. J. Wiley, New York.
  • Yazici, A., Buckles, B.P. and Petry, F.E. (1999) Handling Complex and Uncertainty Information in the ExIFO and NF2 Data Models. IEEETransactions on Fuzzy Systems 7 (6), 659–676.
  • Yazici, A. and Cibiceli, D. (1999) An access structure for similarity-based fuzzy databases. Information Sciences 115, 137–163.
  • Yazici, A. and George, R. (1999) Fuzzy Database Modeling. Physica-Verlag, New York-Heidelberg.
  • Zadeh, L.A. (1965) Fuzzy Sets. Information and Control 8, 338–353.
  • Zadeh, L.A. (1978) Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy Sets and Systems 1, 3–28.
  • Zadeh, L.A. (1999) Fuzzy Logic=Computing with Words. In: L.A. Zadeh and J. Kacprzyk, eds.,Studies in Fuzziness and Soft Computing: Computingwith Words in Information/Intelligent Systems 1: Foundations. Physica-Verlag, Heidelberg.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.