PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The stability radius of an efficient solution in minimax Boolean programming problem

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider a vector minimax Boolean programming problem. The problem consists in finding the set of Pareto optimal solutions. When the problem's parameters vary then the optimal solution of the problem obtained for some initial parameters may appear non-optimal. We calculate the maximal perturbation of parameters which preseves the Optimality of a given solution of the problem. The formula for the stability radius of the given Pareto optimal solution was obtained.
Rocznik
Strony
127--132
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
  • Belarusian State University Fr. Skoriny 4, 220050, Minsk, Belarus
  • Belarusian State University Fr. Skoriny 4, 220050, Minsk, Belarus
  • Otto-von-Guericke University Universitats Platz 2 FMA/IMO, 39106 Magdeburg, Germany
Bibliografia
  • Chakravarti, N. and Wagelmans, A. (1999) Calculation of stability radiifor combinatorial optimization problems. Oper. Res. Lett. 23, 1–7.
  • Emelichav, V. Girlich, E. Nikulin, Yu. and Podkopaev, D. (2002)Stability and Regularization of vector problems of integer linear programming.Optimization, Berlin 51(4), 645–676.
  • Greenberg, H. (1998) An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization. In: D.Woodruff, ed., Advances in Computational and Stochastic Optimization, Logic Programming and Heuristic Search. Kluwer Academic Publishers, Dordrecht, 97–148.
  • Hadamard, J. (1902) Sur les problemes aux deriv́ees partielles et leur signification physique. Bull. Univ. Princeton.
  • Hoesel, S. and Wagelmans, A. (1999) On the complexity of postoptimality analysis of 0/1 programs. Discrete Applied Mathematics 91, 251–263.
  • Libura, M. (1993) Sensitivity Analysis for Solutions of Discrete Optimization Problems (in Polish). Synpress, Warszawa.
  • Libura, M. (1996) Optimality conditions and sensitivity analysis for combinatorial optimization problems. Control and Cybernetics 25(6), 1165–1179.
  • Libura, M. (2000) Quality of solutions for perturbed combinatorial optimization problems. Control and Cybernetics 29(1), 199–219.
  • Pareto, V. (1909) Manuel d’economie politique. Qiard, Paris.
  • Sergienko, I., Kozeratskaya, L. and Lebedeva, T. (1995) Investigationof stability and parametric analysis of discrete optimization problems (in Russian). Kiev, Navukova Dumka.
  • Sotskov, Yu., Leontev, V. and Gordeev E. (1995) Some concepts of stability analysis in combinatorial optimization. Discrete Applied Mathematics 58, 169–190.
  • Sotskov, Yu., Tanaev, V. and Werner F. (1998) Stability radius of anoptimal schedule: a survey and recent developments. Industrial Applications of Discrete Optimization 16, 72–108.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.