Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An approach to the numerically reliable synthesis of the H[infinity] suboptimal state estimators for discretised continuous-time processes is presented. The approach is based on suitable dual J-lossless factorisations of chain-scattering representations of estimated processes. It is demonstrated that for a sufficiently small sampling period the standard forward shift operator techniques may become ill-conditioned and numerical robustness of the design procedures can be significantly improved by employing the so-called delta operator models of the process. State-space models of all H[infinity] sub-optimal estimators are obtained by considering the suitable delta-domain algebraic Riccati equation and the corresponding generalised eigenproblem formulation. A relative condition number of this equation is used as a measure of its numerical conditioning. Both regular problems concerning models having no zeros on the boundary of the delta-domain stability region and irregular (non-standard) problems of models with such zeros are examined. For the first case, an approach based on a dual J-lossless factorisation is proposed while in the second case an extended dual J-lossless factorisation based on a zero compensator technique s required. Two numerical examples are given to illustrate some properties of the considered delta-domain approach.
Czasopismo
Rocznik
Tom
Strony
761--802
Opis fizyczny
Bibliogr. 79 poz., wykr.
Twórcy
autor
- Department of Automatic Control, Faculty of Electronics, Telecommunication and Computer Science, Gdańsk University of Technology, Narutowicza 11/12, 80-952 Gdańsk, Poland, piotrjs@poczta.onet.pl
Bibliografia
- Arnold, W.F. and Laub, A.J. (1984) Generalized eigenproblem algorithms and software for algebraic Riccati equations. Proc. IEEE 72 (12), 1746–1754.
- Benner, P., Laub, A. J. and Mehrmann, V. (1997) Benchmarks for the numerical solution of algebraic Riccati equations. IEEE Control Systems Magazine 17 (5), 18–28.
- Boley, D. (1987) Computing rank-deficiency of rectangular matrix pencils. Systems and Control Letters 9, 207–214.
- Boullion, T.L. and Odell, P.L. (1971) Generalized Inverse Matrices. New York, Wiley-Interscience, John Wiley and Sons.
- Chen, J. and Patton, R. J. (1999) Robust Model-based Fault Diagnosis for Dynamic Systems. Dordrecht, London, Kluwer Academic Press.
- Chen, S., Wu, J., Istepanian, R. H., Chu, J. and Whidborne, J. F. (1999) Optimising stability bounds of finite-precision controller structures for sampled-data systems in the δ-operator domain. IEE Proc., Control Theory and Applications 146 (6), 517–526.
- Collins Jr., E.G., Haddad, W.M. and Challeboina, V. (1997) Robustness analysis in the delta-domain using fixed-structure multipliers. Proc of the IEEE Conf. Decision and Control, San Diego, CA, 3286-3291.
- Collins Jr., E. G. and Song, T. (1999) A delta operator approach to discrete-time Hδ control. Int. J. Control 72 (4), 315–320.
- Copeland, R.B. and Safonov, M.G. (1992a) A generalized eigenproblem solution for singular H2 and H∞ problems. Control and Dynamic Systems 50, 331–394.
- Copeland, R.B. and Safonov, M.G. (1992b) Zero cancelling compensation for singular control problems and their application to the inner-outer factorization problem. Int. J. Robust and Nonlinear Control 2 (2), 139–164.
- Copeland, R.B. and Safonov, M.G. (1995) A zero compensation approach to singular H2 and H∞ problems. Int. J. Robust and Nonlinear Control 5 (2), 71–106.
- Demmel, J.W. (1997) Applied Numerical Linear Algebra. Philadelphia, SIAM.
- Douglas, J. and Athans, M. (1996) Multivariable poles, zeros, and pole-zero cancellations. In: W.S.Levine, ed., The Control Handbook. Boca Raton, CRC Press. IEEE Press.
- Doyle, J.C., Francis, B.A. and Tannenbaum, A.R. (1992) Feedback Control Theory. New York, Macmillan Publishing Company.
- Doyle, J. C., Glover, K., Khargonekar, P. P. and Francis, B. A. (1989) State-space solutions to standard H2 and H∞ control problems. IEEE Trans. Autom. Control 34 (8), 831–847.
- Dullerud, G. E. and Paganini, F. (2000) A course in Robust Control The- ory. A Convex Approach. New York-Berlin, Springer Verlag.
- Emami-Naeini, A. and Van Dooren, P. (1982) Computation of Zeros of Linear Multivariable Systems. Automatica 18 (4), 415–430.
- Feuer, A. and Middleton, R. H. (1995) Conditioning of LMS algorithms with fast sampling. IEEE Trans. on Automatic Control 43 (8), 1978–1981.
- Francis, B. A. (1987) A Course in H∞ Control Theory. Berlin, New York, Springer Verlag.
- Genin, Y., Van Dooren, P., Kailath, T., Delosme, J. and Morf, M. (1983) On Σ-lossless transfer functions and related questions. Linear Algebra and Applics. 50, 251–275.
- Gevers, M. and Li, G. (1993) Parametrizations in Control, Estimation and Filtering Problems. London, Springer Verlag.
- Golub, G. H. and Van Loan, C. F. (1996) Matrix Computations. Baltimore, London, The Johns Hopkins University Press.
- Goodwin, G. C., Middleton, R. H. and Poof, H. V. (1992) High-speed digital signal processing and control. Proc. IEEE 80 (2), 240–259.
- Graham, A. (1981) Kronecker products and matrix calculus with applications. New York, John Wiley and Sons.
- Green, M. (1992) H∞controller synthesis by J-lossless coprime factorisation. SIAM J. Control Optim. 30 (3), 522–547.
- Green, M., and Limebeer, D. J. N. (1995) Linear Robust Control. Englewood Cliffs, N.J., Prentice Hall, Inc.
- Hara, S. and Sugie, T. (1991) Inner-outer factorization for strictly proper functions with jω−axis zeros. Syst. Control Lett. 16, 179-185.
- Hara, S., Sugie, T. and Kondo, R. (1992) H∞ control problem with jω-axis zeros. Automatica 28 (1), 55–70.
- Hassibi, B., Sayed, A. H. and Kailth, T. (1999) Indefinite-Quadratic Estimation and Control. A Unified Approach to H2 and H∞ Theories. Philadelphia, SIAM.
- Hautus, M. L. J. and Siverman, L. M. (1983) System structure and singular control. Linear Algebra and Applics. 50, 369–402.
- Henderson, H. V. and Searle, S. S. (1981) The vec-permutation matrix, the vec operator and Kronecker products: A review. Linear and Multilinear Algebra 9, 271–288.
- Higham, N. J. (1996) Accuracy and Stability of Numerical Algorithms. Philadelphia, SIAM.
- Hou, M. and M ̈uller, P. C. (1992) Design of observers for linear systems with unknown inputs. IEEE Trans. Automatic Control 37 (6), 871–875.
- Hung, Y. S. (1989) H∞ optimal control. Part 1. Model matching. Int. J. Control 49 (4), 1291–1330.
- Hung, Y. S. and Chu, D. (1995) A simple and unified approach for analyzing discrete-time algebraic Riccati equation and spectral factorisation related to discrete-time H∞−control problem. Technical Report, University of Hong Kong.
- Ionescu, V., Oara, C. and Weiss, M. (1997) General matrix pencil techniques for the solution of algebraic Riccati equations: a unified approach.IEEE Trans. Automatic Control 42 (8), 1085–1097.
- Kimura, H. (1984) Robust stabilizability for a class of transfer functions. IEEE Trans. Automatic Control 29 (9), 788–793.
- Kimura, H. (1991) Generalized chain-scattering approach to H∞ control problems. In: S.P. Bhattacharyya, L.H. Keel, eds., Control of Uncertain Dynamic Systems. Boca Raton, CRC Press.
- Kimura, H. (1992a) (J, J′)-lossless factorisation using conjugations of zero and pole extractions. In: S. Hosoe, ed., Robust Control. Berlin, Heidelberg, Springer Verlag.
- Kimura, H. (1992b) (J, J′)-lossless factorization based on conjugation. Systems Control Letters 19, 95–109.
- Kimura, H. (1995) Chain-scattering representation, J-lossless factorization and H∞ control. J. Mathematical Systems Estimation and Control 5, 203–255.
- Kimura, H. (1997) Chain-scattering Approach to H∞ Control. Boston, Basel, Birkhauser.
- Kongprawechnon, W. and Kimura, H. (1996) J-lossless conjugation and factorization for discrete-time systems. Int. J. Control 65 (5), 867–884.
- Kongprawechnon, W. and Kimura, H. (1998) J-lossless factorization and H∞ control for discrete-time systems. Int. J. Control 70 (3), 423–446.
- Lancaster, P. and Rodman, L. (1995) Algebraic Riccati Equations. Oxford, Clarendon Press.
- Laub, A. J. (1991) Invariant subspace methods for the numerical solution of Riccati equations. In: S. Bittani, A.J. Laub, J.C. Willems, eds., The Riccati Equation. Berlin, Heidelberg, Springer Verlag.
- Li, Q. and Fan, H. H. (1997) On properties of information matrices of delta operator based adaptive signal processing algorithms. IEEE Trans. On Signal Processing 45 (10), 2454–2467.
- Liu, K. Z. and Mita, T. (1989) Conjugation and control of discrete-time systems. Int. J. Control 50 (4), 1435–1460.
- Meyer, C. D. (2000) Matrix Analysis and Applied Linear Algebra. Philadelphia, SIAM.
- Middleton, R. H. and Goodwin, G. C. (1986) Improved finite word length characteristics in digital control using delta operators. IEEE Trans. Automatic Control 31 (11), 1015–1021.
- Middleton, R. H. and Goodwin, G. C. (1990) Digital control and estimation. Englewood Cliffs, N.J., Prentice Hall Int., Inc.
- Neuman, C. P. (1993) Transformations between delta and forward shift operator transfer function models. IEEE Trans. on Systems, Man, and Cybernetics 23 (1), 295–296.
- Ninness, B. M. and Goodwin, G. C. (1991) The relationship between discrete time and continuous time linear estimation. In: N.K. Sinha, G.P. Rao, eds., Identification of Continuous-Time Systems. Dordrecht, Kluwer Academic Publishers.
- O’young, S. D., Postlethwaite, I. and Gu, D. W. (1989) A treatment of axis model-matching transformation zeros in the optimal H2 and H∞ control design. IEEE Trans. Automatic Control 34 (5), 551–553.
- Premaratne, K., Salvi, R., Habib, N.R. and Le Gall, J.P. (1994) Delta-operator formulated discrete-time approximations of continuous-time systems. IEEE Trans. on Automatic Control 39 (3), 581–585.
- Safonov, M. G. (1987) Imaginary-axis zeros in multivariable H∞−optimal control. In: R.F.Curtain, ed., Modelling, robustness and sensitivity reduction in control systems. NATO ASI Series, 34, Berlin, Heidelberg, Springer Verlag.
- Scherer, C. (1992a) H∞−control by state-feedback for plants with zeros on the imaginary axis. SIAM J. Control and Optimization 30 (1), 123–142.
- Scherer, C. (1992b) H∞−optimization without assumption on finite or infinite zeros. SIAM J. Control and Optimization 30 (1), 143–166.
- Stewart, G. W. (1973) Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Review 15 (4), 727–764.
- Stewart, G. W. (2001) Matrix algorithms, Vol II: Eigensystems. Philadelphia, SIAM.
- Stoorvogel, A. (1992) The H∞ control problem. A state space approach. New York, London, Prentice Hall Int., Inc.
- Suchomski, P. (2001a) Robust PI and PID controller design in delta domain. IEE Proc. Control Theory and Applic. 148 (5), 350–354.
- Suchomski, P. (2001b) A lossless factorisation approach to H∞ control in delta domain. Proc. European Control Conf., ECC’01, Porto, Portugal, FR-IS01-18, 3422-3427.
- Suchomski, P. (2001c) Numerical conditioning of delta-domain Lyapunov and Riccati equations. IEE Proc. Control Theory and Applic. 148 (6), 497–501
- Suchomski, P. (2002a) A dual J-lossless factorisations for suboptimal H∞ estimation in delta domain. Proc. of the 15th Triennial World Congress of the International Federation of Automatic Control, Barcelona, Spain, T-Fr-M05-4 (CD ROM).
- Suchomski, P. (2002b) A J-lossless coprime factorisation approach to H∞ control in delta domain. Automatica 38 (10), 1807–1814.
- Tsai, M. C. and Postlethwaite, I. (1991) On J-lossless co-prime factorizations and H∞ control. Int. J. Robust and Nonlin. Control 1 (1), 47–68.
- Tsai, M. C. and Tsai, C. S. (1992) Formulations of the H∞ control problem by using chain-scattering matrix description. Proc. of the American Control Conf., Chicago, 1870-1871.
- Tsai, M. C. and Tsai, C. S. (1993) A chain-scattering matrix description approach to H∞ control. IEEE Trans. Autom. Control 38 (9), 1416–1421.
- Tsai, M. C. and Tsai, C. S. (1995) A transfer matrix framework approach to the synthesis of H∞ controllers. Int. J. Robust and Nonlin. Control 5 (2), 155–173.
- Tsai, M. C, Tsai, C. S. and Sun, Y. Y. (1993) On discrete-time H∞ control: A lossless coprime factorization approach. IEEE Trans. Autom. Control 38 (7), 1143–1147.
- Van Dooren, P. (1979) The computation of Kronecker’s canonical form of a singular pencil. Linear Algebra and Applics. 27, 103–141.
- Van Dooren, P. (1981a) A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Stat. Comput. 2 (2), 121–135.
- Van Dooren, P. (1981b) The generalized eigenstructure problem in linear system theory. IEEE Trans. Autom. Control 26 (1), 111–129.
- Varga, A. (1996) Computation of Kronecker-like forms of a system pencil: applications, algorithms and software. Proc. of the IEEE Int. Symp. on Computer Aided Control System Design, CACSD’96, Dearborn, MI, 77-82.
- Weinmann, A. (1991) Uncertain Models and Robust Control. Wien, New York, Springer Verlag.
- Willems, J. S. (1981) Almost invariant subspaces: an approach to high gain feedback deign - Part I: almost controlled invariant subspaces. IEEE Trans. Autom. Control 26 (1), 235–252.
- Willems, J.S., Kitapc ̧i, A. and Silverman, L.M. (1986) Singular optimal control: a geometric approach. SIAM J. Control Optim. 24 (2), 323–337.
- Zhou, K., Doyle, J. C. and Glover, K. (1996) Robust and Optimal Control. Upper Saddle River, N.J., Prentice Hall, Inc.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0033