Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this note, the derivatives of eigenvalues with respect to the model parameters for linear damped systems is proposed by means of kronecker algebra and matrix calculus. A numerical example is also provided to illustrate the use of the main result.
Czasopismo
Rocznik
Tom
Strony
735--741
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Department of Electrical Engineering I-Shou University Kaohsiung, Taiwan 840, R.O.C
Bibliografia
- Graham, K. (1981) Kronecker Products and Matrix Calculus with Applications. Wiley, New York.
- Hu, B. and Eberhard, P. (1999) Response bounds for linear damped systems. ASME Journal of Applied Mechanics 66, 997-1003.
- Hu, B. and Schiehlen, B. (1996) Amplitude bounds of linear forced vibrations. Archive of Applied Mechanics 66, 357-368.
- Nicholson, D.W. (1987a) Eigenvalue bounds for linear mechanical systems with nonmodal damping. Mech. Res. Commun. 14, 115-122.
- Nicholson, D.W. (1987b) Response bounds for nonclassically damped mechanical systems under transient loads. ASME Journal of Applied Mechanics 54, 430-433.
- Prells, U. and Friswell, M.I. (2000) Calculating derivatives of repeated and nonrepeated eigenvalues without explicit use of eigenvectors. AIAA Journal 38, 1426-1436.
- Schiehlen, W. and Hu, B. (1995) Amplitude bounds of linear free vibrations. ASME Journal of Applied Mechanics 62, 231-233.
- Weinmann, A. (1991) Uncertain Models and Robust Control. Springer-Verlag, New York.
- Yae, K.H. and Inman, D.J. (1987) Response bounds for linear underdamped systems. ASME Journal of Applied Mechanics 54, 419-423
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0031