Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is shown that in metric spaces each [alpha, phi)-meagre set A is uniformly very porous and its index of uniform v-porosity is not smaller than [k-alpha/3k+alpha] provided that [phi] is a strictly k-monotone family of Lipschitz functions and [alpha] < k. The paper contains also conditions implying that a k-monotone family of Lipschitz functions is strictly k-monotone.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
671--681
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
- Argonsky, S., and Bruckner, A. (1985/6) Local compactness and porosity in metric spaces. Real Exchange Analysis 11, 365 - 379.
- Pallaschke, D., and Rolewicz, S. (1997) Foundation of Mathematical Optimization. Mathematics and its Applications 388. Kluwer Academic Publishers, Dordrecht/Boston/London.
- Penot, J-P. (2003) Rotundity, smoothness and duality. Control and Cybernetics, 32, 4.
- Preiss, D., and Zajıcek, L. (1984a) Stronger estimates of smallness of sets of Frechet nondifferentiability of convex functions. Proc. 11-th Winter School, Suppl. Rend. Circ. Mat di Palermo. ser II, 3, 219 - 223.
- Preiss, D., and Zajıcek, L. (1984b) Frechet differentiation of convex functions in a Banach space with a separable dual. Proc. Amer. Math. Soc. 91, 202 - 204.
- Rolewicz, S. (1994) On Mazur Theorem for Lipschitz functions. Arch. der Math., 63, 535 - 540.
- Rolewicz, S. (1995) On Φ-differentiability of functions over metric spaces. Topological Methods of Non-linear Analysis 5, 229 - 236.
- Rolewicz, S. (1999) On α(·)-monotone multifunction and differentiability of γ-paraconvex functions. Stud. Math. 133, 29 - 37.
- Rolewicz, S. (2002) On α(·)-monotone multifunctions and differentiability of strongly α(·)-paraconvex functions. Control and Cybernetics 31, 3, 1-19.
- Rolewicz, S. (2003) On uniform Φ-subdifferentials (in preparation).
- Zajıcek, L. (1976) Sets of σ-porosity and sets of σ-porosity (q). Casopis Pest Mat. 101, 350 – 359
- Zajıcek, L. (1983) Differentiability of distance functions and points of multivaluedness of the metric projection in Banach spaces. Cechoslovak Math. ˇ Jour. 33(108), 292 - 308.
- Zajıcek, L. (1984) A generalization of an Ekeland-Lebourg theorem and differentiability of distance functions. Proc. 11-th Winter School, Suppl. Rend. Circ. Mat di Palermo ser II, 3, 403 - 410.
- Zajicek, L. (1987/8) Porosity and σ-porosity. Real Exchange Analysis 13, 314 – 350
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.