PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Second order optimality conditions for bang-bang control problems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Second order necessary and sufficient optimality conditions for bang-bang control problems have been studied in Milyutin, Osmolovskii (1998). These conditions amount to testing the positive (semi-)definiteness of a quadratic form on a critical cone. The assumptions are appropriate for numerical verification only in some special cases. In this paper, we study various transformations of the quadratic form and the critical cone which will be tailored to different types of control problems in practice. In particular, by means of a solution to a linear matrix differential equation, the quadratic form can be converted to perfect squares. We demonstrate by three practical examples that the conditions obtained can be verified numerically.
Rocznik
Strony
555--584
Opis fizyczny
Bibliogr. 43 poz., wykr.
Twórcy
autor
  • Westfalische Wilhelms–Universitat Munster Institut fur Numerische Mathematik Einsteinstr. 62, D–48149 Munster, Germany
  • Department of Applied Mathematics Moscow State Civil Engineering University (MISI) Yaroslavskoe sh., 26, 129337 Moscow, Russia
Bibliografia
  • Agrachev, A.A., Stefani, G. and Zezza, P.L. (2002) Strong optimality for a bang–bang trajectory. SIAM J. Control and Optimization, 41, 991- 1014.
  • Augustin, D. and Maurer, H. (2001a) Computational sensitivity analysis for state constrained optimal control problems. Annals of Operations Research, 101, 75–99.
  • Bressan, A. (1985) A high order test for optimality of bang–bang controls. SIAM J. Control and Optimization, 23, 38–48.
  • Buskens, C. (1998) Optimierungsmethoden und Sensitivit¨atsanalyse fur optimale Steuerprozesse mit Steuer– und Zustandsbeschr¨ankungen. Dissertation, Institut f¨ur Numerische Mathematik, WWU M¨unster, Germany.
  • Dontchev, A.L., Hager, W.W., Poore, A.B., and Yang, B. (1995) Optimality, stability and convergence in nonlinear control. Applied Math. 582 H. MAURER, N. P. OSMOLOVSKII and Optimization, 31, 297–326.
  • Dunn, J.C. (1995) Second order optimality conditions in sets of L∞ functions with range in a polyhedron. SIAM J. Control Optimization, 33, 1603– 1635.
  • Dunn, J.C. (1996) On L2 sufficient conditions and the gradient projection method for optimal control problems. SIAM J. Control Optimization, 34, 1270–1290.
  • Felgenhauer, U. (2003) On stability of bang–bang type controls, SIAM J. Control and Optimization, 41, 1843–1867.
  • Kaya, Y. and Noakes, J.L. (1996) Computations and time-optimal controls, Optimal Control Applications and Methods, 17, 171–185.
  • Kim, J.-H. R. (2002) Optimierungsmethoden und Sensitivit¨atsanalyse fur optimale bang–bang Steuerungen mit Anwendungen in der Nichtlinearen Optik. Dissertation, Institut fur Numerische Mathematik, WWU Munster, Germany.
  • Kim, J.-H. R., Maurer, H., Astrov, Yu.A., Bode, M. and Purwins, H.G. (2001) High–speed switch–on of a semiconductor gas discharge image converter using optimal control methods. J. Computational Physics, 170, 395–414.
  • Kim, J.-H. R., Lippi, G.L., Maurer, H. (2003) Single mode semiconductor lasers with homogeneous transverse profile. Submitted to Physica-D.
  • Ledzewicz, U. and Schattler, H. (2002) ¨ Optimal bang–bang control for a 2–compartment model in cancer chemotherapy. To appear in J. of Optimization Theory and Applications.
  • Levitin, E.S., Milyutin, A.A. and Osmolovskii, N.P. (1978) Higher order conditions for a local minimum in the problems with constraints. Russian Math. Surveys, 33, 6, 97–168.
  • Malanowski, K. (1992) Second order conditions and constraint qualifications in stability and sensitivity analysis of solutions to optimization problems in Hilbert spaces. Applied Math. Optimization, 25, 51–79.
  • Malanowski, K. (1993) Two-norm approach in stability and sensitivity analysis of optimization and optimal control problems. Advances in Math. Sciences and Applications, 2, 397–443.
  • Malanowski, K. (1994) Stability and sensitivity of solutions to nonlinear optimal control problems. Applied Math. Optimization, 32, 111–141.
  • Malanowski, K. (2001) Sensitivity analysis for parametric control problems with control–state constraints. Dissertationes Mathematicae CCCXCIV, 1–51, Polska Akademia Nauk, Instytut Matematyczny, Warszawa.
  • Malanowski, K. and Maurer, H. (1996) Sensitivity analysis for parametric control problems with control–state constraints. Comput. Optim. and Applications, 5, 253–283.
  • Malanowski, K. and Maurer, H. (1998) Sensitivity analysis for state constrained optimal control problems. Discrete and Continuous Dynamical Systems, 4, 241–272
  • Malanowski, K. and Maurer, H. (2001) Sensitivity analysis for optimal control problems subject to higher order state constraints. Annals of Operations Research, 101, 43–74.
  • Maurer, H. (1981) First and second order sufficient optimality conditions in mathematical programming and optimal control. Mathematical Programming Study, 14, 163–177.
  • Maurer, H. and Augustin, D. (2001b) Sensitivity analysis and real-time control of parametric optimal control problems using boundary value methods. M. Grotschel et al., eds. In: On–line Optimization of Large Scale Systems, 17–55, Springer Verlag, Berlin.
  • Maurer, H. and Oberle, H.J. (2002) Second order sufficient conditions for optimal control problems with free final time: the Riccati approach. SIAM J. on Control and Optimization, 41, 380–403.
  • Maurer, H. and Osmolovskii, N.P. (2001) Second order sufficient conditions for time optimal bang–bang control problems. Submitted to SIAM J. Control and Optimization.
  • Maurer, H. and Pickenhain, S. (1995) Second order sufficient conditions for optimal control problems with mixed control-state constraints. J. Optim. Theory and Applications, 86, 649–667.
  • Milyutin, A.A. and Osmolovskii, N.P. (1998) Calculus of Variations and Optimal Control. Translations of Mathematical Monographs, 180, American Mathematical Society, Providence.
  • Noble, J. and Schattler, H. (2001) Sufficient conditions for relative minima of broken extremals in optimal control theory. Submitted.
  • Oberle, H.J. and Grimm, W. (1989) BNDSCO – A program for the numerical solution of optimal control problems. Institute for Flight Systems Dynamics, DLR, Oberpfaffenhofen, Germany, Internal Report No. 515– 89/22.
  • Oberle, H.J. and Pesch, H.J. (2000) private communication.
  • Osmolovskii, N.P. (1988a) High-order necessary and sufficient conditions for Pontryagin and bounded-strong minima in the optimal control problems. Dokl. Akad. Nauk SSSR, Ser. Cybernetics and Control Theory 303, 1052–1056, English transl., Sov. Phys. Dokl., 33, No. 12 (1988), 883–885.
  • Osmolovskii, N.P. (1988b) Theory of higher order conditions in optimal control. Doctor of Science Thesis (in Russian), Moscow.
  • Osmolovskii, N.P. (1995) Quadratic conditions for nonsingular extremals in optimal control (A theoretical treatment). Russian J. of Mathematical Physics, 2, 487–516.
  • Osmolovskii, N.P. (2003) Quadratic optimality conditions for broken extremals in the general problem of calculus of variations. Submitted to Journal of Math. Science.
  • Osmolovskii, N.P. and Lempio, F. (2000) Jacobi–type conditions and Riccati equation for broken extremal. Journal of Math. Science, 100, No.5, 2572–2592.
  • Osmolovskii, N.P. and Lempio, F. (2002) Transformation of quadratic forms to perfect squares for broken extremals, submitted.
  • Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V. and Mishchenko, E.F. (1961)The Mathematical Theory of Optimal Processes. Fizmatgiz, Moscow; English translation: Pergamon Press, New York, 1964.
  • Sarychev, A. (1997) First and second–order sufficient optimality conditions for bang–bang controls. SIAM J. Control and Optimization, 35, 315–340.
  • Schattler, H. (1988) On the local structure of time–optimal bang–bang trajectories in IR3. SIAM J. Control and Optimization, 26, 186–204.
  • Sussmann, H.J. (1979) A bang–bang theorem with bounds on the number of switchings. SIAM J. Control and Optimization, 17, 629–651.
  • Sussmann, H.J. (1987a) The structure of time–optimal trajectories for single– input systems in the the plane: the C∞ nonsingular case. SIAM J. Control and Optimization, 25, 433–465.
  • Sussmann, H.J. (1987b) The structure of time–optimal trajectories for single– input systems in the the plane: the general real analytic case. SIAM J. Control and Optimization, 25, 868–904.
  • Zeidan, V. (1994) The Riccati equation for optimal control problems with mixed state–control constraints: necessity and sufficiency. SIAM J. Control and Optimization, 32, 1297–1321
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.