Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Robinson's implicit function theorem has played a mayor role in the analysis of stability of optimization problems in the last two decades. In this paper we take a new look at this theorem, and with an updated terminology go back to the roots and present some extensions.
Czasopismo
Rocznik
Tom
Strony
529--541
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
Bibliografia
- Bonnans, J. F., and Shapiro, A. (2000) Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer-Verlag, New York.
- Dontchev, A.L. (1995) Implicit function theorems for generalized equations. Math. Programming, 70, Ser. A, 91–106.
- Klatte, D. and Kummer, B. (2002) Nonsmooth equations in optimization. Regularity, calculus, methods and applications. Nonconvex Optimization and its Applications, 60, Kluwer Academic Publishers, Dordrecht
- Levy A.B. (2000) Calm minima in parameterized finite-dimensional optimization, SIAM J. Optim. 11, 160–178.
- Malanowski, K. (2001a) Stability and sensitivity analysis for optimal control problems with control-state constraints. Dissertationes Math. 394.
- Malanowski, K. (2001b)Bouligand differentiability of solutions to parametric optimal control problems. Numer. Funct. Anal. Optim. 22, 973–990.
- Robinson, S.M. (1980) Strongly regular generalized equations, Math. of Oper. Research 5, 43–62.
- Robinson, S.M. (1991) An implicit-function theorem for a class of nonsmooth functions. Math. of Oper. Research 16, 292–309.
- Wets, R.J.-B. and Rockafellar, R.T. (1997) Variational Analysis, Springer-Verlag, Berlin
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0021