Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The stability issue of critical shapes for shape optimization problems with the state function given by a solution to the Neumann problem for the Laplace equation is considered. To this end, the properties of the shape Hessian evaluated at critical shapes are analysed. First, it is proved that the stability cannot be expected for the model problem. Then, the new estimates for the shape Hessian are derived in order to overcome the classical two norms-discrepancy well know in control problems, Malanowski (2001). In the context of shape optimization, the situation is similar compared to control problems, actually, the shape Hessian can be coercive only in the norm strictly weaker with respect to the norm of the second order differentiability of the shape functional. In addition, it is shown that an appropriate regularization makes possible the stability of critical shapes.
Czasopismo
Rocznik
Tom
Strony
503--528
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- Laboratoire de Mathematiques Appliqu´ees de Compiegne, Universite de Technologie de Compiegne, former affiliation : Antenne de Bretagne de l’Ecole Normale Sup´erieure de Cachan where this work was done;
autor
- Institut Elie Cartan, Laboratoire de Mathematiques, Universite Henri Poincare Nancy I, B.P. 239, 54506 Vandoeuvre les Nancy Cedex, France
autor
- Systems Research Institute of the Polish Academy of Sciences, ul. Newelska 6, 01-447 Warszawa, Poland
Bibliografia
- Belov, S. and Fuji, N. (1997) Symmetry and sufficient condition of optimality in a domain optimization problem. Control and Cybernetics, 26(1) 45–56.
- Courant, R.and Hilbert, D. (1989) Methods of mathematical physics. Vol. II. Partial differential equations. Reprint of the 1962 original. A Wiley Interscience Publication, John Wiley & Sons Inc., New York.
- Dambrine, M.(2002) About the variations of the shape Hessian and sufficient conditions of stability for critical shapes. Revista Real Academia Ciencias, RACSAM, 96(1).
- Dambrine, M. (2000) Hessiennes de forme et stabilit´e des formes critiques. PhD thesis, Ecole Normale Sup´erieure de Cachan, ´
- Dambrine, M. and Pierre, M. (2000) About stability of equilibrium shapes. Mathematical Modelling and Numerical Analysis, 34(4), 811–834.
- Descloux, J. (1990) The bidimensionnal shaping problem without surface tension. Technical report, Ecole Polytechnique F´ed´erale de Lausanne. ´
- Eppler., K. (2000) Second derivatives and suffient optimality conditions for shape functionals. Control and Cybernetics, 29(2), 485–511.
- Gilbarg, D. and Trudinger, N.S. (1983) Elliptic partial differential equations of second order, Springer-Verlag, Berlin, second edition.
- Henrot, A. and Pierre, M. (1989) Un probl`eme inverse en formage des m´etaux liquides. RAIRO Mod´el. Math. Anal. Num´er., 23(1), 155–177.
- Malanowski, K. (2001) Stability and sensitivity analysis for optimal control problems with control-state constraints. Dissertationes Math. (Rozprawy Mat.) 394.
- Murat, F. and Simon J. (1977) Optimal control with respect to the domain. These de l’Universit´e Paris VI.
- Sokolowski, J. and Zolesio, J.-P. (1992) Shape sensitivity analysis. Introduction to shape optimization. Springer-Verlag, Berlin
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.