Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The null controllability problem is considered for 2-D thermoelastic plates under hinged mechanical boundary conditions. The resulting partial differential equation system generates an analytic semigroup on the space of finite energy. Consequently, because the thermoelastic system is associated with an infinite speed of propagation, the null controllability question is a suitable one for contemplation. It is shown that all finite energy states can be driven to zero by means of L^2(Q)-mechanical or thermal controls. In addition, the singularity of the minimal energy function, as T | 0, is also investigated. Ultimately, we establish the optimal blowup rate O(T-5/2) for this function, in the case one control (either mechanical or thermal ) is acting upon the system and O(T-5/2). in the case of two controls (thermal and mechanical). This rate of singularity is optimal and in fact the same as obtained by considering finite dimensional truncations of the thermoelastic PDE.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
473--490
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- Department of Mathematics University of Nebraska-Lincoln Lincoln, NE 68588
autor
- Department of Mathematics University of Virginia Charlottesville, VA 22901
Bibliografia
- Avalos, G. (2000) Exact controllability of a thermoelastic system with control in the thermal component only. Differential and Integral Equations., 13 (4-6), April-June, 613-630.
- Avalos, G. and Lasiecka, I. (1996) Exponential stability of a thermoelastic system without mechanical dissipation. Rendiconti dell’Istituto di Matema-tica dell’ Universit`a di Trieste, XXVIII, Supplemento, 1-28.
- Avalos, G., and Lasiecka, I. (1998) Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation. SIAM J. Math. Anal., 29 (1), 155-182.
- Avalos, G., and Lasiecka, I. (2000) Boundary controllability of thermoelastic plates via the free boundary conditions. SIAM J. Control Optim., 38, No. 2, 337-383 .
- Avalos, G. and Lasiecka, I. (2002a) A note on the null controllability of thermoelastic plates and singularity of the associated minimal energy function. Preprints di Matematica, 10, Scuola Normale Superiore, Pisa.
- Avalos, G. and Lasiecka, I. (2002b) Optimal blow up rates for the minimal energy null control for the strongly damped wave equation, IMA preprint #1863 (University of Minnesota), July, to appear in Annali di Scuda Normale Superiore.
- Bensoussan, A., Da Prato, G., Delfour, M. C. and Mitter, S. K. (1995) Representation and Control of Infinite Dimensional Systems. Volume II, Birkh¨auser, Boston.
- Benabdallah, A. and Naso, M. G.(2002) Null controllability of a thermoelastic plate. Abstract and Applied Analysis. 7, 585-601.
- Da Prato, G. and Zabczyk, J. (1992) Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge.
- Da Prato, G. (2001) An Introduction to Infinite Dimensional Analysis. Scuola Normale Superiore.
- Gozzi, F. and Loreti, P. Regularity of the minimum time function and minimum energy problems. To appear in SIAM Journal on Control and Optimization.
- Grisvard, P. (1967) Caracterization de quelques espaces d’interpolation. Arch. Rational Mech. Anal., 25, 40-63.
- Lasiecka, I. and Triggiani, R. (1993) Exact controllability of the wave equation with Neumann boundary control. Appl. Math. Optim., 28, 243-290.
- Lasiecka, I. and Triggiani, R. (1998a) Analyticity of thermo-elastic semigroups with coupled/hinged Neumann B. C. Abstract and Applied Analysis, 3(2), 153-169.
- Lasiecka, I. and Triggiani, R. (1998b) Exact null controllability of structurally damped and thermoelastic parabolic models. Rend. Mat. Acc. Lincei, s. 9, 9, 43-69.
- Lasiecka, I. and Triggiani, R. (2000) Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Cambridge University Press, New York.
- Liu, Z. and Renardy, M. (1995) A note on the equations of a thermoelastic plate. Appl. Math. Lett., 8(3), 1-6.
- Lunardi, A. (1997) Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in R n. Annali si Scuola Normale Superiore, Serie IV, XXIV, 133-164.
- Seidman, T.I. (1988) How fast are violent controls?. Math. of Control, Signals, Syst., 1, 89-95.
- Priola, E. and Zabczyk, J. (2002) Null controllability with vanishing energy. Quaderni, 10.University of Turin
- Pazy, A. (1983) Semigroups of Operators and Applications to Partial Differential Equations. Springer-Verlag, New York.
- Triggiani, R. (1997) Analyticity, and lack thereof, of semigroups arising from thermo-elastic plates. In: Special volume “Computational Science for the 21st Century” Proceedings in honor of R. Glowinski. Chapter on Control: Theory and Numerics. Wiley.
- Triggiani, R. (2002) Optimal estimates of minimal norm controls in exact nullcontrollability ot two non-classical abstract parabolic equations. To appear in Integral and Differential Equations.
- Zabczyk, J. (1992) Mathematical Control Theory. Birkhauser, Boston
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0018