PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stable and related matrices in economic theory

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is well known that local stability analysis of a Walrasian multiple markets model is performed by approximating, according to Taylor's expansion, a system of first-order differential equations. So, one has to study the stability of a linear system (with constant coefficients). Since the earlier studies of Walrasian economic equilibrium, economists have suggested numerous conditions ensuring local stability of the same. The aim of this note is to give a survey of various conditions, used in economic analysis, ensuring that a (real) square matrix is stable. We show, in a unified manner, their inter-relations and make some new remarks on quasi-dominant matrices and on D-stable matrices.
Rocznik
Strony
397--410
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • Faculty of Economics University of Pavia Via S. Felice 5, 27100 Pavia, Italy
Bibliografia
  • ARROW, K.J. and McMANUS, M. (1958) A note on dynamic stability. Econometr-ica, 26, 448- 454.
  • ARROW, K.J. and HAHN, F .H. (1971) General Cornpetdive Analysis. Oliver & Boyd, Edinburgh.
  • BELLMAN, R. (1953) Stab·ildy Theor·y of Differ·ential Eq·uations. Me Graw-Hill, New York.
  • BERMAN, A. and PLEMMONS, R.J. (1976) Nonnegat·ive Matrices ·in the Mathematical Sciences. Academic Press, New York.
  • CARLSON, D. (1968) A new criterion for H-stability of complex matrices. Linea1· Algebra and Appl., 1, 59-64.
  • CARLSON, D. and SCHNEIDER, H. (1963) Inertia theorems for matrices: the semidefinite case. J. Math. Anal. Appl.., 6, 430-446.
  • CIMA, A., VAN DEN ESSEN, A., GASULL, A., RuBBERS, E. and MANOSAS, F. (1997) A polynomial counterexample to the Markus-Yanabe conjecture. Advances ·in Mathemat-ics, 131, 453-457.
  • FIEDLER, M. and PTAK, V. (1962) On matrices with non-positive off-diagonal elements and positive principal minors. Czechoslovak Mathematical Journal, 12, 382-400.
  • FIEDLER, M. and PTAI<, V. (1966) Some results on matrices of class K and their application to the convergence rate of iteration procedures. Czechoslovak Mathemat·ical Journal, 16, 260- 273.
  • FISHER, M. and FULLER, A. (1958) On the stabilisation of matrices and the convergence of linear iterative processes. Proceedings of the Cambridge Philosophical Society, 54, 417-425.
  • GANDOLFO, G. (1997) Econom·ic Dynamics. Springer Verlag, Berlin.
  • GANTMACHER, F.R. (1959) Theory of Matrices, vol. I, II. Chelsea, New York.
  • HAHN, F. (1982) Stability. In: K.J. Arrow, M.D. Intrilligator, eds., Handbook of Mathematical Economics, Vol. II. North Holland, Amsterdam, 745-793.
  • LANCASTER, K. (1968) Mathematical Economics. Macmillan, London.
  • LANCASTER, P. (1969) Theory of Matrices. Academic Press, New York.
  • MAGNANI, U. and MERIGGI, M.R. (1981) Characterizations of K-rnatrices. In: G. Castellani, P. Mazzoleni, eds., Mathematical Pogramrning and Its Economic Applications. F. Angeli, Milan, 535-547.
  • MAYBEE, J. and QUIRK, J. (1969) Qualitative problems in matrix theory. SIAM Review, 11, 30- 51.
  • McKENZIE, L.W. (1960) Matrices with dominant diagonals and economic theory. In: K.J. Arrow, S. Karlin, P. Suppes, eds., Mathematical Methods in the Social Sciences. Stanford Univ. Press, Stanford, 47-62.
  • MORISHIMA, M. (1952) On the laws of change of the price-system in an economy which contains complementarity commodities. Osaka Econmnic Paper-s, 1, 101-113.
  • MURATA, Y. (1977) Mathematics for· Stability and Optimization of Economic Systems. Academic Press, New York.
  • NEWMAN, P.K. (1959) Some notes on stability conditions. Review of Economic Studies, 27, 1-9.
  • NEWMAN, P.K. (1961) Approaches to stability analysis. Economica, 28, 12-29.
  • QUIRK, J. and RUPPERT, R . (1965) Qualitative economics and the stability of equilibrium. Review of Economic Studies, 32, 311-.'326.
  • QUIRK, J.P. and SAPOSNIK, R. (1968) Introduction to General Equilibrium Theory and Welfar-e Economics. McGraw-Hill, New York.
  • SAMUELSON, P.A. (1947) Foundations of Economic Analysis. Harvard Univ. Press, Cambridge, Mass.
  • TAKAYAMA, A. (1985) Mathematical Economics. Cambridge Univ. Press, Cambridge.
  • TARTAR, L. (1971) Une nouvelle caracterisation des M-matrices. Renue Francaise d’informatique et de Recherche Operationnelle, 5, R.-3, 127-128.
  • TAUSSKY, 0. (1949) A recurring theorem on determinants. American Math. Monthly, 56, 672-676.
  • UEKAWA, Y. (1971) Generalization of the Stolper-Samuelson theorem. Econometrica, 39, 197- 217.
  • VARGA, R.S. (1976) M-matrix theory and recent results in numerical linear algebra. In: J.R. Bunch, J.D. Rose, eds., Sparse Matrix Comp'Utation. Academic Press, New York, 375-387.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.