Control and Cybernetics
vol. 32 (2003) No. 2

On the number of positive solutions to a class of integral
equations®

by
Long Wang!, Wensheng Yu? and Lin Zhang®

1 Center for Systems and Control
Department of Mechanics and Engineering Science
Peking University, Beijing 100871, P.R. China

% Laboratory for Complex Systems and Intelligent Control
Institute of Automation, Chinese Academy of Sciences
Beijing 100080, P.R. China

3 Department of Automation, Tsinghua University
Beijing 100084, P.R. China

Abstract: By using the complete discrimination system for
polynomials, we study the number of positive solutions in C[0,1]

to the integral equation ¢(z) = jo y)dy, where k(z,y) =

(J()+wﬂnmw)%z)>0¢()>00<¢y<11—12
are continuous functions on [0, 1] n is a positive integer. We prove
the following results: when n = 1, either there does not exist, or
there exist infinitely many positive solutions in C[0,1]; when n 2 2.
there exist at least 1, at most n + 1 positive solutions in C[0,1].
Necessary and sufficient conditions are derived for the cases: 1)
n = 1, there exist positive solutions; 2) n > 2, there exist exactly
m (m € {1,2,...,n + 1}) positive solutions. Our results generalize
the ones existing in the literature, and their usefulness is shown by
examples.
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1. Introduction

The existence of positive solutions to integral equations is an active research
field and has important applications in the stability of feedback systems (Cor-
duneanu, 1973, Courant and Hilbert, 1953). In 1991, the number of positive
solutions to the following integral equation

1
mm=ékmw&mw 1)

was discussed in Yao (1991). In this paper, we will study the number of positive
solutions in C[0,1] to the following more general integral equation

1
dﬂ=/k@@¢@@ @)
0
where

k(z,y) = p1(2)d1(y) + pa(z)d2(y),
pi(z) > 0,¢:(y) >0,0< z,y < 1,i=1,2

are continuous functions on [0, 1], n is a positive integer. We prove the following
results: when n = 1, either there does not exist, or there exist infinitely many
positive solutions in C[0,1]; when n > 2, there exist at least 1, at most n + 1
positive solutions in C[0, 1]. Especially, when n is an odd number greater than
2, there exist at least 1, at most n positive solutions in C[0,1]. The necessary
and sufficient conditions are derived for the cases: 1) n = 1, there exist positive
solutions in C[0,1]; 2) n > 2, there exist exactly m (m € {1,2,...,n + 1})
positive solutions in C[0,1]. Our results generalize the results existing in the
literature, and their usefulness is shown by examples presented in this paper.

In essence, the analysis of the number of positive solutions to (2) can be
transformed into determination of real roots of a certain polynomial, which is
a century-long, albeit still active research area in mathematics. The classical
Sturm method or Newton formula can be employed to determine the real root
distribution of polynomials (Gantmacher, 1960, Yang, Zhang, Hou, 1996), but
the Sturm method is inefficient in establishing discriminant systems for high-
order polynomials with symbolic coefficients (Gantmacher, 1960, Yang, Hou,
Zeng, 1996, Yang, Zhang, Hou, 1996), and the Newton formula involves a re-
cursive procedure to determine the real roots, thus it is difficult to establish
explicit criteria (Gantmacher, 1960, Greub, 1967, Yang, Zhang, Hou, 1996).

More recently, Yang and associates established the complete discrimination
system for polynomials, which can give a set of explicit expressions based on
the coeflicients of polynomials to determine the root distribution of polynomials
(Yang, Hou, Zeng, 1996, Yang, Zhang, Hou, 1996).

Let
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the Sylvester matrix of f(z) and its derivative f'(;c) (Yang, Hou, Zeng, 1996,
Yang, Zhang, Hou, 1996)

Qg a a2 cee On-a Qn
0 nap (n—1)a; ... 2an-2 @an—1
ap a cer Qp-g  Gp-1 an
0 nag cvs Sl 209 )
ag aq as i 0
i 0 nag (n-1)a; ... @n-1 |

be called the discrimination matrix of f(z), denoted as Discr(f). Further,

[DI(f)a DZ(f)!aDn(f)!

the even-order principal minor sequence of Diser(f), is called the discriminant
sequence of f(z), and

[sign(Dy), sign(D2), ..., sign(Dy)]

is called the sign list of the discriminant sequence [Dy, D3, ..., D,], where sign(-)
is the sign function, i.e.,

1 ifx>0,
sign(z) =< 0 ifz=0,
-1 ifz<0.

Given a sign list [s1,82,...,8,], we can construct a revised sign list

[Elsszv'”vsﬂ]

as follows:
1) If [si, Sit1,.-.,8i4;] is a section of the given sign list and s; # 0;s;41 =
Sit2 = ... = Siyj—1 = 0;8:4; # 0, then replace the subsection consisting of all

0 elements
[3i41) 8i420+ 4+ s 8igj-1]
by the following subsection with equal number of terms
[—8i,—8i, 8i, 8iy —8i, —Si, Siy Siy —8iy. )
ie., gipr = (-1)F) g r=1,2,...,5- 1.
2) Let e = si for all other terms, i.e., all other terms remain the same.

LEMMA 1 (Yang, Hou, Zeng, 1996, Yang, Zhang, Hou, 1996) Given the poly-
nomial with real coefficients f(z) = apz™ + a12™ ' + ... + a, € P, if the
number of sign changes in the revised sign list of its discriminant sequence s
v, and the number of non-zero elements wn the revised sign list is p, then the
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REMARK 1 The discriminant sequence of f(z) can also be constructed by the
principal minors of the Bezout maitriz of f(z) and f (z) (Yang, Hou, Zeng,
1996, Yang, Zhang, Hou, 1996); the number of distinct real roots of f(z) can
also be determined by the sign difference of the Bezout matriz of f(z) and f (z)
(Yang, Hou, Zeng, 1996, Yang, Zhang, Hou, 1996).

REMARK 2 The complete discrimination sysiem for polynomials can also be
used to determine the number and the multiplicity of complex roots (Yang, Hou,
Zeng, 1996, Yang, Zhang, Hou, 1996).

Yang and Xia (1997) also proposed a method to determine the number of
positive (negative) roots of a polynomial, which is similar to Lemma 1 in prin-
ciple, but is more efficient.

LEMMA 2 (Yang, Xia, 1997) Given the polynomial with real coefficients f(z)
= agz" + a12" ' + ...+ a, € P", a9 # 0,a, # 0, let h(z) = f(-z) and
{d1,da,...,d2ns1} be the sequence of the principal minors of the discrimination
matriz Discr(h) of h(z). If the number of sign changes in the revised sign
list of the sequence {dyda,dads, ... ,d2,d2n41} is v, and the number of non-zero
elements in the revised sign list is p, then the number of distinct positive roots

of f(z) is p—2v.

2. Main results

Consider the problem of determining the number of positive solutions in C[0, 1]
to the integral equation of the following form

1
o(@) = [ Koy (3)
where

k(z,y) = p1(z)d1(y) + pa2(z)b2(y),
(Pi(z) > 0: ¢l(y} > 050 < T,y < 1!* = 1,2

are continuous functions on [0,1] ,n is a positive integer.
Denote

a‘n—!t_c / ¢l n '(y ('y)dy, I ]

‘n—ll"C‘l/ ¢2 (y]dy‘r 1‘_{]r1r L

Qi = bn—z,t An—i41,i-1, i= 1121 ceey My, Qg = bﬂ,Os Qnil = —A0,n,

where CL,i=0,1,...,n, stand for the combinatorial number. Our main result
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THEOREM 1 When n = 1, either there does not exist, or there exist infinitely
many positive solutions in C[0,1] to the integral equation (3). The necessary
and sufficient conditions for the existence of positive solutions in C[0,1] are
aio — 1<0 and (al’o = 1)(1)0,1 = 1) = a0,1b1,0 =0.

THEOREM 2 When n > 2, there exist at least 1, at most n+1 positive solutions
in C[0,1] to the integral equation (3). Especially, when n is an odd number
greater than 2, there exist at least 1, at most n positive solutions in C[0,1].

THEOREM 3 When n > 2, the necessary and sufficient conditions for the ez-
istence of ezactly m (m € {1,2,...,n + 1}) positive solutions in C[0,1] to the
integral equation (3) are: the number of sign changes v in the revised sign
list of the discriminant sequence of the polynomial f(s) := Z,’:ol o s2(nt1-9)
and the number of its non-zero elements u satisfy m = “‘;i; or, equiva-
lently, the number of sign changes v in the revised sign list of the sequence
{d1da,dads, . .. ,doant2dants} and the number of its non-zero elements p satisfy
m = %m’-, where {d1,ds, ... ,dany3} ts the sequence of the principal minors of

the discriminant matriz Discr(h) of h(s) := Y1t} ai(—s) 1%,

Specifically, when n = 2, denote

E, 'r=£l—2—, t=%<0,

(674 (67)) (e7))

Ay =p% —3r, Ay =rp?+3tp— 4r?,
Az = —4r% 4+ 18rtp + p?r? — 4p3t — 2742,

[D1, D2, D3, Dy, D5, D] = (L, —p, —=pA1, A1Ag, ApAg, —tA]]. (4)

Then, we have

COROLLARY 1 There exist at least 1, at most 3 positive solutions in C[0,1] to
the integral equation (1).

COROLLARY 2 The necessary and sufficient conditions for the integral equation
(1) to have ezactly 3 positive solutions in C[0,1] are p<0,A;>0,A2>0,A3>0.

COROLLARY 3 The necessary and sufficient conditions for the integral equation
(1) to have ezactly 2 positive solutions in C[0,1] are p<0,A;>0,A2>0,A3=0.

COROLLARY 4 The necessary and sufficient conditions for the integral equation
(1) to have ezxactly 1 positive solution in C[0,1] arep > 0, or A; <0, or A3 <0,
or Az < 0.

REMARK 3 If n is even, the integral equation (3) does mot have any negative
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REMARK 4 Ifn is odd, since p(z) is a positive solution in C[0,1] to the integral
equation (3) if and only if —p(z) is a negative solution in C[0,1)] to the integral
equation (8), thus, when n = 1, the integral equation (3) either does not have,
or has infinitely many negative solutions in C|[0,1]; when n is odd and greater

than 2, the integral equation (3) has at least 1, at most n negative solutions in
Clo, 1].

REMARK 5 When n = 1, the necessary and sufficient conditions for ezistence
of negative solutions in C[0,1] to the integral equation (3) are the same as in
Theorem 1. When n is odd and greater than 2, the necessary and sufficient
conditions for existence of ezactly m(m € {1,2,...,n}) negative solutions in
C[0,1] to the integral equation (3) are the same as in Theorem 3.

REMARK 6 Our method can be extended to the case when the integral kernel
k(z,y) is taken as Ti_, 0i(x)$i(y), where pi(z) > 0,4:(y) > 0, 0 < 2,y <
1,i=1,2,...,1, are continuous functions on [0, 1].

REMARK 7 The conclusions in Yao (1991) are equivalent to Corollaries 1, 2, 3
above.

3. Proofs of the theorems

Proof of Theorem 1. When n = 1, the integral equation (3) becomes

1
p(z) = /0 k(z,y)p(y)dy. (5)

Thus, we have

1 1
w(z) = p1(z) [a $1(y)e(y)dy + pa(z) /D P2(y)e(y)dy.

If ¢(z) is a positive solution in C[0,1] to equation (5), then ¢(z) can be ex-
pressed as ¢(z) = Ajp1(z) + Aapa(z), where Ay > 0,3 > 0 are coefficients to
be determined. Taking this into equation (5), we get the following system of
algebraic equations

{ a1,0A1 + @1 A2 = Ax (6)
b10A1 +bo1A2 = Ay

where a1,0 = [J ¢1(3)01(¥)dy, ao1 = [, 1(y)p2(y)dy, bro = f, $2(v)e1(y)dy,

by = fgl $2(y)p2(y)dy. Apparently, the necessary and sufficient conditions
for the system of algebraic equations (6) to have positive solutions Ay, Ay are
ayo — Ll < U, and ([.I'.l‘(] - 1)(50‘1 = 1) = &0'151‘0 =1, MOI‘EOV&I‘, if w(z) is
a positive solution to equation (5), then, obviously, for any positive constant
number ¢, cp(z) is also a positive solution to equation (5). Thus, there are
infinitely many positive solutions in C[0, 1] to equation (5). This completes the
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LEMMA 3 The system of equations

an,0T" + an-1,1w"‘1y =} an_zygw"‘2y2+. s .+a1‘n_1_'z:y"_1 + a0yt =2
bn,02™ + bn-1,12" "1y + bu_2,28™ 22+ L A by o128y T Doy =y
On—izi > 0, bn—ﬂi,-i >0, +=0,1,2,...,n. (7)

has at least 1, at most n+1 (at most n, when n is odd) positive solutions, where
n > 2.

Proof. Let
(@) =
nz,y n 0z + an—l,ll'n—ly +...+ ao,nyna
Y
Ty )= '
q(z,y) BroZ™ + bn11Z" Ty + ... + bony”
x> 07 y > 0’
then

p(kz, ky) = K—,,l_—lp(w»'y), q(kz, Ky) = nnl_lq(w,y)» k> 0.
Let
E = {z|p(z,1) = ¢(z,1)},
then the number of positive solutions to the system of equations (7) is equal to
the number of elements in E. In fact, if (z,y) is a positive solution to (7), then
p(z,y) = q(z,y) =1,
thus 5 € E. Conversely, if z € F, since n > 2, it is easy to verify that

("V/p(z,1)z, "3/p(z,1)) is a positive solution to (7).
Suppose z € E, by p(z,1) = ¢(z,1), we have

bn0z™ ! + (bn1,1 = @n0)z" + (bn2,2 — An-1,1)2" "1 +...

+ (bo,n — @1,n-1)Z — ag,n = 0.

Namely

oz™ ! oz + oz 4 a4 0ny1 =0 (8)
where

Oy Z g i Oneit ity 3= 1200050 G0 =ba0y Oner=—0n:
Since ag = bno > 0,an41 = —ag,n < 0, equation (8) has at least 1, at most

n + 1 positive roots. Especially, when n > 2 and is odd, since equation (8) has
at least 1 negative root, it has at most n positive roots. This completes the



390 L. WANG, W. YU, L. ZHANG

Proof of Theorems 2 and 3. When n > 2, since
1
0@ = [ K)oy
0

1 1
= ¢1(z) A $1(y)9" (y)dy + p2(z) ]0 d2(y)e" (y)dy

similarly to the proof of Theorem 1, the positive solution ¢(z) in C[0, 1] to the
integral equation (3) can be expressed as p(z) = Ajpi1(x) + A2p2(z), where
A1 > 0,A2 > 0 are coefficients to be determined. Taking this into equation
(3), by a simple but lengthy calculation, we see that A;, Ay should be positive
solutions to the following system of algebraic equations

an,n)\'f + G.n_l‘le_lz\z + an_zlzz\?_z)\% +...
+ al_n_lAlA’z‘“l -+ (L(),HAE‘ = )l) 9
Y RN PP L) PRTS MEPPY L) t BT )
- blln_l)q/\;_l + bﬂ,n E‘ - /\‘2

where

1
- /0 G bl §=0,T,0cm,

1
buis=C: fﬂ @) Gy i=0,1,...,n.

By Lemma 3, we complete the proof of Theorem 2. m

Moreover, from the proof of Lemma 3, we know that finding the positive
solutions to the system of algebraic equations (9) or (7) can be transformed
into finding the positive solutions to equation (8). Applying Lemmas 1 and 2
to equation (8), we complete the proof of Theorem 3. is|

Proof of Corollaries 1, 2, 3, 4. Some notations in this proof are defined in
Section 2. Corollary 1 is a direct consequence of Theorem 2. When n = 2,
equation (8) becomes

aoz® + a12? + azz + a3 = 0. (10)

By a direct computation, we know that the discriminant sequence [Dy, D, D3,
Dy, Dg, Dg) of the polynomial f(s) := ags® + a1s* + azs? + a3 is determined
by (4) (up to a positive factor).

Since ¢ < 0, it is easy to see that the number of sign changes v in the revised
sign list of [Dy, D3, D3, D4, Ds, Dg] and the number of its non-zero elements p
satisfy 6 = p — 2v if and only if the revised sign list of [Dy, D2, D3, Dy, D5, Dg)
is [1.1,1,1,1,1], which is equivalent to p < 0,A; > 0,A; > 0,A3 > 0. This
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Similarly, the number of sign changes v in the revised sign list of [Dy, Da, D3,
Dy, D5, Dg) and the number of its non-zero elements p satisfy 4 = p— 2v if and
only if the revised sign list of [Dy, D2, D3, D4, D5, Dg) is [1,1,1,1,0,0], which
is equivalent to p < 0,A; > 0,A, > 0,A3 = 0. This completes the proof of
Corollary 3. ]

By combining the Corollaries 1, 2, 3, we get Corollary 4.

4. Some illustrative examples

ExAMPLE 1 Consider the integral equation

176 3
w(x) =[ (gzy + gy) e(y)dy, 0<z<1 (11)
0
Let

o1(z) = §$‘ $1(y) =y, @2(z) = g $2(y) =y.

5 5"

Then, it is easy to get a10 = b1 = -g-, apy = bpy = % The conditions
in Theorem 1 are met. Hence, there are infinitely many positive solutions in
C[0,1). In fact, p(z) = c($z + 2),Ve > 0 are such solutions.

REMARK 8 From the proof of theorems and Ezample 1, we can see that, for a
given integral equation, we can not only determine the number of its positive
solutions, but also find the positive solutions explicitly by solving the algebraic
equation (8).

EXAMPLE 2 Consider the integral equation
1
p(z) = / [18 max{e, -2z +1+¢€} + max{%, %(23: -1+ e]}
0

(12)
x max{6,272y — 130}] e"(y)dy, 0<z<1,

where e > 0,n=1or 2.
Let

@1(z) = max{e, -22+ 1+ ¢}, ¢1(y) = 18,
1
w2(z) = max {%, 5(23: -1+ s)}, ¢2(y) = max{6,272y — 130}.

When n = 1, using the notations in Section 2 and by a simple computation, we
can get

1 9 . 3
ayo = fo $1(y)e1(y)dy = 18¢ + 5 G01= j; $1(y)p2(y)dy = 6 + 3

1 1
! [ hcilan N TaiNddai = AL 3 o i i [ ks aNim Haiaalan) = 40, ' 145
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Since a0 — 1 > 0, the conditions in Theorem 1 are not met. Thus, equation
(12) does not have any positive solutions in C[0,1].
Similarly, when n = 2, by a simple computation, we can get

1
a0 =34+9%+ 1862, ay, = 6e + 122 ag,2 = 3 + e+ 2¢%

154 80 145 40
2 2 2
bao =1+ 3e+40e”, by g€+3€,bo‘2 + 275-!-95
26 73
g = bg‘(] =1+43¢ +4U€2, ) = bl,l — a0 = 3‘52 + ?E —3,
8 , 17 5 1
ay=bpa—a11 = 95 275+2, a3 = —ap2 = —2"—¢ 3
Let
43 (2%} 3
p=— r=—, t:_;
o g g

A= P2 —3r, Ay = 'r‘p2 + 3ip — Qrz,
Az = —4r3 + 18rtp + p*r? — 4p3t =27,

we have (up to a positive factor)

p=—1+ 2.7037¢ + 2.8889¢2,

Ay = —65.959¢2 + 94.7166% — 21.593¢ + 327.26¢* + 1,

Ag = T02.22¢* — 1291.9¢° + 255.78¢3 — 2356.3¢% — 78.517¢2 — 26.207¢ + 1,
Az =1—27.778¢ — 1.4371 x 1055 — 23275.0¢* — 1.0374 x 10%¢°
—63.724 — 1222.6¢>.

By numerical computations, it is easy to get

The real roots of p = 0 are —-1.2197 and 0.2838;
The real roots of Ay = 0 are 0.041426 and 0.45024;
The real roots of Ay = 0 are —0.70495 and 0.034952;
The real roots of A3 = 0 are —0.21287 and 0.03143.

Hence, by Corollaries 2,34, it is easy to know that there exists a positive number
7o &= 0.03143 (note here the difference between the exactness of the conditions
in Corollaries 2,3,4 and the inexactness of the numerical computations above),
such that: when 0 < e < g, equation (12) has 3 positive solutions in C[0,1];
when ¢ = rg, equation (12) has 2 positive solutions in C|[0,1]; when € > rq,
equation (12) has 1 positive solution in C|0, 1].

REMARK 9 The case when n = 2 in the ezample above has also been studied
in Yoo (1991). Our result here is completely consistent with the result in Yao
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ExXAMPLE 3 Consider the integral equation (12) in the example above. When
n = 3,e is 2 or 0.2, determine the number of its positive solutions in C|0, 1].
Similarly to Example 2, when n = 3, using the notations from Section 2 and by
a simple computation, we can get
9 27 27
azo = i + 9¢ + 362 + 18€3, a1 = 3e+ 362 + 18¢3,
9, 4 g, 1 .1 .1,
= - 6 ! = — —y ol ey —g%
a2 26 +06e” + ¢, ao;3 36 T D & 3e-+- 25

3 9 163
bs0 = 1 +3e + 562 + 4063, by =¢+ ?52 + 403,

299 , 40 4 163 , 287 37 4
= — — bos = — —+2 —e”.
b1,2 186 + 35 + 6¢, bo3 546 +540+ 6+276
3 9 41 9
oy = Z+36+§€2+40€3, aq =~86+?EZ+22€3_Z’
28, 14,4 _ 40 , 287 125 4
az—gs 36 + 3¢, a3 275 +540 € 275,
2 1 1 1
POT.. S ... 2

Hence, when ¢ = 2, we have aps® + a15® + ags? + azs® + ag = 344.75s% +
212.42s% — 18.889s% — 40.431s% — 8.0833. By a simple computation, the revised
sign list of its discriminant sequence is

[1,=1,~1,=1,1,1,1,=1}.

By Theorem 3, equation (12) has only 1 positive solution in C[0, 1].

When e = 0.2, we have ags® + a1 + ags? + ags? + g = 1.85s% —3.1273s0 +
0.68711s* +0.6351952 — 0.17533. By a simple computation, the revised sign list
of its discriminant sequence is

(L, L 1=t =1,~1,=1,~1),
By Theorem 3, equation (12) has 3 positive solutions in C|0, 1].

REMARK 10 In this paper, we have investigated the number of positive solutions
to a class of integral equations by using a new tool: the Complete Discrimination
System for Polynomials. For simplicity of discussion, we have only considered
the Riemannian wntegrals in the space of continuous functions. FExtensions to
more general integrals in more general function spaces are currently under in-
vestigation.

REMARK 11 The integral kernels considered in this paper are standard kernels
in the theory of integral equations (Corduneanu, 1973, Yao, 1991), and are more
general than the integral kernels in Yao (1991).

REMARK 12 Integral equations play an important role in robust control theory,

classical mechanics, digital signal processing, nonlinear systems analysis, and
ol e . 'K ' v P 2 o1 -~ - .
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5. Conclusions

By using the complete discrimination system for polynomials, we have inves-
tigated the number of positive solutions in C[0,1] to the integral equation
o(z) = [, k(z,9)¢"(y)dy, where k(z,y) = o1(2)d1(y) + pa(z)d2(y), pi(z) >
0,¢:(y) > 0,0 < z,y < 1,i = 1,2, are continuous functions on [0,1], where n
is a positive integer. We get the following results: when n = 1, either there
does not exist, or there exist infinitely many positive solutions in C[0, 1]; when
n > 2, there exist at least 1, at most n + 1 positive solutions in C[0,1]. The
necessary and sufficient conditions are derived for the cases: 1) n = 1, there
exist positive solutions; 2) n > 2, there exist exactly m(m € {1,2,...,n+1})
positive solutions. Our results generalize the ones known from the literature,
and their usefulness is shown by examples presented.
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