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Abstract: In this paper, a novel indirect adaptive neural con­
troller using only two auto-tuning neurons is developed for a class 
of nonlinear systems. Unlike traditional multi-layered neural con­
trollers, the structure of the proposed controller is very simple and 
practicable. There are three adjustable parameters in each auto­
tuning neuron. Two such auto-tuning neurons used in our proposed 
indirect adaptive controller are used to track on-line the desired sig­
nal. The adaptation law for adjusting these parameters is developed 
based on the Lyapunov approach. Moreover, the stability of the 
overall closed-loop system can be analyzed and guaranteed by in­
troducing the additional supervisory controller and the technique of 
modified adaptation law with projection. Finally, the tracking con­
trol of the inverted pendulum system is presented to illustrate the 
proposed method. 

Keywords: auto-tuning neuron, indirect adaptive control, Lya­
punov approach, supervisory control, adaptation mechanism. 

1. Introduction 

The adaptive control by using neural networks has been widely used in many 
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and adaptability. Two types of adaptive controls are generally investigated: 
1) Indirect adaptive control: the models of the plant are first obtained and 

learned by using the neural networks, and then the feedback control law is 
designed based on these neural network models (Park, Choi, Lee, 1996; Horng, 
1999; Khanmohammadi, Hassanzadeh, Sharifian, 2000). 

2) Direct adaptive control: the neural networks are directly used as a con­
troller in the feedback control system, i.e., the outputs of the neural networks 
are just the control inputs of the plant. Then the error between the desired and 
actual outputs is directly used to update on-line the adjustable parameters in 
the neural controller (Cui, Shin, 1993; Chen, Chang, 1996; Wu, Lee, Shih, 1998) 
based on certain adaptation law. 

Generally, the architecture of the typical multilayer perceptrons (MLPs) 
consists of several layers, i.e., the input, hidden, and output layers. Each layer 
usually contains some neurons that are connected with those in the other layers 
by weights. The error value is then fed back level-by-level to the input layer 
in order to update the connection weights, so that the error is minimized, if 
the back-propagation algorithm is used. However, it is complicated and takes 
much time for computation because of many adjustable weights within the neu­
ral networks. In a real-line control process, a full-connected neural controller 
will affect the reaction time of the system. Consequently, the way to reduce 
the complexity of the neural controller for an on-line control system becomes 
more crucial and meaningful. Moreover, full-connected neural controller will 
undoubtedly increase the complexity for its hardware implementation. 

In this paper, an indirect adaptive neural controller that is composed of 
only two auto-tuning neurons without any weight connection will be proposed. 
Completely different from the general multilayer neural controllers, the struc­
ture of the proposed controller is very simple and practicable. There are three 
adjustable parameters in each auto-tuning neuron. Two such auto-tuning neu­
rons are adjusted online in order to track the dynamic behavior of the nonlinear 
systems according to the feedback linearization techniques. The main difference 
between the auto-tuning neuron in this study and the traditional one is that 
a new modified hyperbolic tangent function a[1 + exp(-bx)t1[1- exp(-bx)] is 
used as its activation function (Chen, Chang, 1996; Chang, Hwang, Hsieh, 1998; 
Duch, Jankowski, 1999). Chang et al. (1998) first used this type of auto-tuning 
neuron as a direct controller to control the two heights of the liquid-level sys­
tems. Note that the saturation level a and the slope value b are adjustable 
parameters, making the applicability of the proposed neural controller promis­
ing. 

In the domain of stability analysis of the closed-loop neural and/or fuzzy 
control systems, a number of theoretical advances have been proposed in recent 
years. Thus, Wang (1994, 1996, 1997) first added a supervisory controller into 
the adaptive fuzzy control systems and proposed a modified adaptation law 
with projection, which is based on Lyapunov approach, for tuning the fuzzy 
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using Gaussian networks for wind energy conversion systems is proposed by 
Mayosky, Cancelo (1999), and recently a direct adaptive PID control tuning 
has been also demonstrated (Chang, Hwang, Hsieh, 2002). Therefore, it is 
reasonable and practicable that an indirect neural control just using two auto­
tuning neurons for a class of nonlinear systems be constructed based on the 
same techniques. The detailed adaptation law calculation and the analysis of 
stability will be described in the next section. 

On the other hand, the tracking control of the inverted pendulum system has 
been already investigated and tested using various control strategies in the past. 
This problem is of interest, since it describes an inherently unstable system and 
is typical of a wide class of control problems with severe nonlinearity in a broad 
operation region. For example, an enhancing fuzzy controller with self-learning 
capability was proposed by Jang (1992). An optimal tracking controller based 
on multi-layered neural networks was demonstrated and discussed (Park, Choi, 
Lee, 1996). In addition, Wang (1996) provided an adaptive control technique 
based on fuzzy systems. In this study, we will also apply our proposed scheme 
to the inverted pendulum system to show the control performance. 

2. Analysis and design of indirect adaptive neural con­
troller 

The structure of the auto-tuning neuron used in our proposed indirect adaptive 
neural controller is shown in Fig. 1 and is expressed mathematically as 

net= I-¢, (1) 

where I is the input of the neuron, ¢ is the threshold or bias, and net represents 
the internal state of the neuron. The output of the auto-tuning neuron is given 
by 

h( ) 
a[1- exp( -b ·net)] 

nd = , 
[1 + exp( -b ·net)] 

(2) 

where the activation function h( ·) : R -+ R is a modified hyperbolic tangent 
function, and a and b are the saturation level and the slope value of the function, 

h(net) 
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respectively. It is noted that the output range and the curve shape of such an 
activation function in this auto-tuning neuron are mainly influenced by these two 
adjustable parameters a and b. For convenience, let e = [¢,a, bjT E ~3 represent 
the vector of adjustable parameters. We wish to adjust these parameters in the 
indirect adaptive neural controller in such a way that the control objective can 
be achieved. 

In this study, we consider an nth-order nonlinear system, with the input 
u E ~ and the output y E ~. described as 

X1 = X2,X2 = X3, · · · ,Xn-1 = Xn, 
Xn = f(xl, X2, ... , Xn) + g(x1, X2, ... , Xn)u, 

y =X!, 

or equivalently as 

x(n) = f(x, x, ... , x(n-l)) + g(x, x, ... , x(n-l))u, 
y = x, 

(3) 

where J, g : ~n -+ ~are two unknown functions and, without loss of generality, 
g( ·) > 0 is assumed. In addition, it will be also assumed that there exist positive 
bounds r(X), gu(X), and g1(X ) so that lf(X)I :::; r(X) and 0 < g1(X) :S 
g(X) :S gu(X), where X = [x, x, ... , x(n-l)JT = [xi. x2, ... , Xn]T E ~n is the 
state vector of the system. As it is well known (Slotine, Li, 1991), if f(X) and 
g(X) of the system in (3) are known, then the feedback linearization technique 
can be employed to design a desired controller. Let e = Yd - y ( = Yd- x) be the 
error between the desired and actual outputs. Define Yd = [yd, iJd, ... , y~n-l)]T 
and assume that Yd, iJd, ... , y~n-l) are all bounded, i.e., 

Then the error vector of the system is 

E _ v X _ [ · (n - l)]T _ [ ]T -Ld- - e,e, ... ,e - e1,e2, ... ,en . 

Suppose that we choose a gain vector K = [ko, k1, ... , kn-1V such that all roots 
of 

are in the open left-half complex plane. Now let the feedback control law be 
given by 

(4) 

Substituting (4) into (3), we obtain 
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Consequently, we have e(t) --+ 0 as t--+ oo, i.e., y--+ Yd asymptotically. Note that 
f(X) and g(X) of the system in (3) are assumed to be unknown in this study. 
Here we use two auto-tuning neurons denoted by /(X,01) and g(X,09 ) in place 
of f(X) and g(X) in the feedback control law of (4), respectively, where()! = 
[¢ f, af, b J]T and 09 = [¢9 , a9 , b9 JT represent the vectors of adjustable parameters 
in /(X,()!) and g(X, 09 ). Moreover, in order to satisfy the assumption g(X) > 0, 
equation (2) for g(X, 09 ) should be modified as 

h( 
a9 [1- exp( -b9 · net9 )] 2a9 net ) = + a = .,----~:.___---:--: 9 [1 + exp( -b9 • net9 )] 

9 [1 + exp( -b9 · net9 )]' 
(5) 

where a9 is a positive value implying h(net9 ) > 0, i.e., g(X, 09 ) > 0. For 
/(X, OJ), equation (2) is still used as its activation function. Hence, the resulting 
certainty equivalent controller based on these two auto-tuning neurons is 

(6) 

Throughout the paper, the following assumption is made: 

Assumption 

Let the constraint sets nx, no 1 , and () 1 for the state X and the adjustable 
parameter vectors () 1 and () 9 , respectively, be defined by 

nx ={X ERn: IIXII:::; Mx}, 

no, ={OJ E R3
: 110111:::; Mo1 }, 

no. = {Og E R3 
: IIOgll :::; Mo., and 1/>g, ag, bg ~ c: > 0}, 

where Mx, Mo1 , Mo., and c: are pre-specified parameters and, for simplicity of 
analysis, we may choose Mx ~ IIYd lloo· 

The goal is to keep the state trajectory X and the adjustable parameter 
vector () 1 and () 9 inside the balls nx, no 1 , and no., respectively. First, to reach 
the objective IIXII :::; Mx, let the control input in (3) be 

(7) 

where Un is an indirect adaptive neural control in (6) and Us is the supervisory 
control, which is activated only when !lXII of the system exceeds some bound. 
Now we will design Us and obtain a proper adaptation law for ()! and ()9 such 
that Un approaches the feedback control law u* of ( 4) based on the Lyapunov 
approach. In many papers, to implement such indirect adaptive controller as 
the one mentioned earlier, the neural networks or fuzzy systems were usually 
employed to learn or model the dynamic behavior of the nonlinear functions 
f(X) and g(X), respectively. Undoubtedly, in order to accomplish this task, it 
is necessary to use many adjustable parameters in the neural networks or fuzzy 
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that their outputs of ](X,Bt) and g(X,B9 ) may follow the dynamic behavior 
of nonlinear functions f(X) and g(X ) of the plant. The main idea behind the 
proposed method is different from those of other methods. 

By substituting (7) into (3), we have 

X(n) = f(X) + g(X)(un +Us) 

= f(X) + g(X)(un +Us)+ g(X, B9 )un- g(X, B9 )un 

= f(X) + g(X)(un +us)- ](X, Bt) + y~n) + KT E- g(X, B9 )un 

= y~n) + KT E + (f(X)- ](X, Bt )] + [g(X)- g(X, B9 )]un + g(X)us . 

This implies that 

e(n) = -KT E +[](X , Bt)- f( X )] + [g( X, B9 )- g(X)]un- g(X)us. (8) 

Let 

0 1 0 0 0 
0 0 1 0 0 
0 0 0 0 0 

Ac = 

0 0 0 0 1 
-ko -k1 -k2 -kn-2 -kn-1 

and 

Be= [ 0 . . . 0 1 f, (9) 

be a companion form. From (8), we have 

E =AcE+ Bc[(](X, Bt)- f(X)) + (g(X, B9 )- g(X))un- g(X)us]· (10) 

Now consider the Lyapunov function candidate 

Ve = 2-1ETPE, (11) 

where P is a positive definite symmetric matrix satisfying the Lyapunov equa­
tion 

(12) 

and Q is a given positive definite symmetric matrix. In the following, we will 
choose Q such that Amin(Q) > 1, where Amin(Q) denotes the minimum eigen­
value of Q. Define 

VM = T 1 Amin(P)(Mx -11Ydll oo) 2
. (13) 

Note that if IIXII ~ Mx, then, from (11) , we have 

Ve ~ T 1 Amin(P)IIEII 2 ~ 2- 1 Amin(P)(IIXII-11Ydll) 2 
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Hence if Ve < VM, then IIXII < Mx. The time derivative of Ve along the 
trajectories of the closed-loop system of (10) satisfies 

Ve = T1ET(A~ P + PAc)E + ETPBc[(}(X,BJ)- f(X)) 

+ (g(X, 89 )- g(X))un- g(X)u.] 

= -T 1ETQE + ET PBc[(}(X,BJ)- f(X)) + (g(X,B9 ) 

- g(X))un- g(X)u.] 

::; -T1 ETQE +lET P Bci(I}(X, Bj )I+ IJ(X)I +I§( X, Bg)unl + lg(X)uni) 
- ET P Bcg(X)u.. (14) 

Define the indicator function I* by I* = 1 if Ve ~ V M and I* = 0 if Ve < V M. 
Hence, from the assumptions lf(X)I ::; r(X) and 0 < 9l(X)::; g(X)::; gu(X), 
if the supervisory controller is chosen as 

Us = I*sgn(ET p Bc)g! 1(X)[i}(X, o, )I+ rex) 
+ I§(X, Bg)unl + lgu(X)uniJ, 

then we can guarantee that Ve < 0 in (14) if Ve ~ VM (Wang, 1994). 

(15) 

On the other hand, in order to derive a proper adaptation law for () f = 
[¢>J,aJ,bJ]T and ()9 = [¢>9 ,a9 ,b9 JT, let Bj and o; be two optimal parameters 
vectors such that the approximation error 

w = (}(X,Bj)- f(X)) + (g(X,B;)- g(X))un, (16) 

is minimized. For simplicity of analysis, we may choose D.91 and D.9
9 

large 
enough such that Bj E D.91 and o; E D.9

9 
for all t. By incorporating (16), 

equation (10) can be rewritten as 

E = AcE - Bcg(X)u. 

+ Bc[(}(X, BJ) -}(X, Bj )) + (g(X, 89 ) - g(X, o;))un + w]. (17) 

Now consider another Lyapunov function candidate containing the error of the 
system and the errors between()! and Bj, 89 and()~, given by 

V = T 1 ET PE + (2'YI)- 1(BJ- Bjf(BJ- Bj) 

+ (2'1'2)- 1(89 - o;f(B9 - o;), (18) 

where '1'1 and '/'2 are two positive constants determining the convergence speed. 
Using (17), we have 

V = -T1 ET QE- g(X)ET P Be Us + ET P BcW 

+ ET P Bc(}(X, ()!) -}(X, Bj)) + ET P Bc(§(X, 89 )- g(X, o;))un 
_, '"" ....... , ,.. ;. 
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Taking the Taylor series expansions of ](X,B1) and g(X,B9) around Bj and o;, 
respectively, we obtain 

}(X, B1)- }(X, Bj) = (81 - Bjfaj~~~81 ) + O(IIB1 - Bjll 2
), 

g(X,B9)- g(X,B;) = (89 - o;f 8g~,B9 ) + 0(1189 - o;ll 2
), 

g 

where 0(-) represents the high-order term. From (19), we have 

1f = -2-1 ET QE + o11(0f - Oj)T [of+ 11ET P Eo aj<:o/f) l 
-1 •T[' T 8g(X,Bg) ] T +'/'2 (Bg-89) Bg+/2E PEe BOg Un -g(X)E PEeUs 

+ ET p Ee[w + O(IIBJ- Bjll 2
) + O(IIBg- o; ll 2)un]· (20) 

From (15) and g(X) > 0, we have g(X)ET PEeUs 2: 0 and 

1f ,S -2-1 ET QE + o11(0f- Oj)T [of+ 11ET P 8o aj<:o/f) l 
-1( *)T [· T 8g(X,89) ] +12 89 -89 Bg +12E PEe 

889 
un 

+ ET p Ee[w + O(IIB,- Bjll 2
) + O(IIBg- o;ll2 )unl· (21) 

In order to derive a proper adaptation law and simultaneously guarantee B 1 E 

no, and 89 E no., a modified adaptation law with projection had been proposed 
(Wang, 1994). Foro, , we have 

r a}(X,B1) . 
-11E PEe ao , If(IIBJII < Mo1 ) or 

f • 

B. ( T r8f(X,B,) ) 
j= IIBJII = Mo, and E PEeBJ ao, 2:0 , 

T 8}(X, 81) T 81 r8}(X, 81) . 
-11E PEe 

881 
+11E PEciiBJII 2B1 881 

, otherwise. 

(22) 

For 89 , we have to avoid the certainty equivalent controller Un of (6) being too 
large, resulting from a small value of g(X, 89 ). Hence, if the ith element of 89 , 

denoted by 89 ,, fori= 1, 2, 3, is equal to c, then 

(23) 
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From (22) to (24), these result in 

and 

(() -{}*)T[iJ +-v ETPB 8}(X,()J)] <O 
f f f ,1 c 8() f - ' 

* r[ · T 8g(X,()9 ) ] 
(()9 -()9 ) ()9 +"(2E PBc B()g Un ~0, 

in (21) . Hence, we have 

V ~ -T 1 ETQE + ET PBc[w + O(!I()J- ()jJJ 2
) + 0(!1()9 - e;!l 2 )un] · 

Let 

v = [w + O(Jl()J- () j ll 2
) + O(Jj()9 - e; !l 2)unJ, 

then we have 

V ~ -T1ETQE+ETPBcv. 

321 

(25) 

THEOREM. Consider the system of {3), subject to the control in {7) with {6) , 
{15) , and {22) - {24). If the initial state X(O) E Dx , the initial parameters 
()J(O) E f2e 1 and ()9 (0) E De., then X (t) E Dx, ()J(t) E f2e 1 , and ()9 (t) E De. , 
and the tracking error satisfies 

fat IIE(r)ll 2dr ~ p + q fat Jv(rWdr, t ~ 0, (26) 

where p and q are constants. Furthermore, if v E Lz , i. e., J0
00 

lv(rWdr < oo, 
then 

lim IIE(t)il = 0 
t-+ oo 

Proof. From (25), we have 

V ~ -T1ETQE+ETPBcv 

~ -T 1 Amin(Q)JJEII 2 + T 1 IIEII 2
- T

1(IIEII 2
- 2jjEjjjjPBcvll + IIPBcvll 2

) 

+T1 jjPBcvll 2 

= - 2- 1Amin(Q)j jE II 2 + T 1 IIEII 2
- T 1(IIEII-IIPBcvll) 2 + T 1 IIPBcvll 2 
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Integrating both sides of (27) and recalling that Amin(Q) > 1, we get 

V(t)- V(O) ::; -T1 [Amin(Q)- 1]1t IIE(r)ll2dr 

then 

+2-liiPBcll21t iv(r )i2dr, 

1t IIE(r)ll2dr::; 2[Amin(Q)- 1r1[V(O)- V(t)] 

+ [Amin(Q)- 1r1 IIPBcll 21t iv(rWdr 

::; 2[-\min(Q)- 1r1 [!V(O)I + !V(t)l] 

+ [Amin(Q)- 1r1 IIPBcll 21t lv(r)l 2dr. 

Define 

p = 2[Amin(Q)- 1r1[!V(O)I +sup IV(t)IJ 

q = [Amin(Q)- 1r1 IIPBcll 2, 

then we have 

t:?; O 

1t IIE(r)ll 2dr::; p + q 1t iv(r)i2dr. 

Notice that from (18) the supt:?;O IV(t) l is finite because E , ()!- Bj, and 09 -

o; are all bounded due to the supervisory controller in (15) and the modified 
adaptation law with project ion in (22)- (24). Moreover, if v E L2, then from (26) 
we conclude that E E L2. Since all the variables on the right-hand side of (17) 
are bounded, we have E E Leo . According to the Barbalat's Lemma (Sastry, 
Bodson, 1989; Wang, 1994), if E E L2nLeo and E E Leo, then limt ..... eo IIE(t)ll = 
0. This completes our proof. • 

Y, + 
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Fig. 2 shows the overall structure of the closed-loop feedback system with 
the supervisory controller and the modified adaptation laws with projection. 
In order to accomplish the adaptation laws in (22)- (24), 8}(X,OJ)/80f and 
8g(X, 09 )/809 must be calculated. From (1), (2), and (5) with 01 = [¢J , a1, b1]T 

and 09 = [¢9 ,a9 ,b9 jT, we have 

8}(X, Of) _ __ af_· _bf [1 +}(X, OJ)] [1 _::.....:}('--X-'-,()"-'-!) ] 
8¢! - 2 af af ' 

8}(X,OJ) _ }(X,OJ) 
8a1 - af 

8} (X, () J) _ a 1 · net 1 [ } (X, () 1) ] [ _ } (X, 01) ] 
-'-'------'-'- - 1 + 1 ' 

8b1 2 af a1 

and 

8g(X, 09 ) = -b "(X () ) [1 _ g(X, 09 )] 

8¢9 
99 

' 9 2a9 ' 

8g(X,09 ) _ g(X,09 ) 

8a
9 

- a
9 

8g(X, 09 ) _ t "(X () ) [1 _ g(X, 09 )] 
8b

9 
- ne 99 ' 9 2a

9 
· 

The overall design procedures can be summarized as follows. 
Data: Plant in (3) and desired output Yd· 
Goal: Design a control of (7), i.e., u = Un + u., such that the plant output 

follows the desired output asymptotically. 
Step 1: Determine functions r(X), 9t(X), and gu(X), such that IJ(X)I < 

r(X) and 0 < 9t(X) ~ g(X) ~ gu(X). 
Step 2: Choose the constraint parameters Mx, Me1 , Me1 , and parameter c:. 
Step 3: Choose 11, 12, K, and Q with Amin(Q) > 1 and find the solution P of 

the Lyapunov equation in (12). 
Step 4: Construct the supervisory control Un in (15). 
Step 5: Construct the indirect adaptive neural control Un in (6) with adaptation 

laws in (22)-(24). 
Step 6: The desired control of (7) is given by u = Un + u •. 
Step 7: Stop. 

3. Simulation 

In this section, the tracking control of the inverted pendulum system is presented 
to illustrate the proposed method. The dynamics of the inverted pendulum 
system is described as follows (Wang, 1994) 
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• ( ) mlx~ cos(xt) sin(xt) cos(xJ) gsm x 1 - + X _ me m + mc+m U 
2- l(i _ mcos2(xJ)) l(i _ mcos2(xt)) ' 

3 mc+m 3 mc+m 

(28) 

where x1 is the angle of the pole with respect to the vertical axis, x2 is the 
angular velocity of the pole, g = 9.8m/ s2 is the acceleration due to gravity, 
me = lkg is the mass of cart , m = O.lkg is the mass of pole, l = O.Sm is the half 
length of pole, and u is the control force in Newtons. The Euler method with 
sampling period of 0.01 seconds is used to simulate the nonlinear differential 

-Q.15 

-Q. 2o~~-';--~-';---,~0-1~2-1~4-1~6--:::18-:!20 

Fig. 3(a). Pole angle (solid line actual output; dashed line desired output). 

-0.15 
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equations. From (28), the corresponding r(X), 91(X), and gu(X) are given as 
(Wang, 1994) 

r(X) = 15.78 + 0.036x~, 91(X) = 1.12, and gu(X) = 1.46. 

Moreover, we choose ko = 1 and k1 = 2 so that the roots of s2 + k1s + ko = 0 
are in the left-half complex plane. From (9), we have 

From (12) with Q = diag[10, 10], we have 

Moreover, we choose Mx = 7r/l0, Mo1 = 4, Mo
9 

= 4, e = 0.1, 'Yl = 20, and 
'Y2 = 0.3. 

Our control objective is to make the pole angle x1 of the inverted pendulum 
follow the desired output Yd = 1r sin(t)/30 asymptotically. For instance, with 
the initial state ( 1r /60, 0), Fig. 3 shows the output responses of pole angle x1 and 
its pole angular velocity x2, respectively. It is clear that the control task can 
be successfully accomplished. The comparison between the certainty equivalent 
controller Un in ( 6) and the feedback linearization controller u* in ( 4) is shown 
in Fig. 4. From Fig. 4, we can easily see that these two curves are almost 
identical after about 1.8 seconds. 
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4. Conclusion and future research 

In this paper, an indirect adaptive neural control based on only two auto-tuning 
neurons for a class of nonlinear systems has been proposed. The important con­
tribution in our proposed scheme is that the complexity of the traditional neural 
controllers can be greatly reduced; only two auto-tuning neurons are utilized and 
adjusted such that their outputs can track the desired dynamic t rajectories of 
the plant. The adaptation laws for adjustable parameters have been derived 
by using the Lyapunov approach, and the stability of the closed-loop systems 
can be guaranteed by introducing an additional supervisory controller and a 
modified adaptation law with projection. Finally, the tracking control of the in­
verted pendulum system has been employed to illustrate the use of the proposed 
indirect adaptive neural controller. From the simulation results, it is obvious 
that good performance can be achieved by using the proposed scheme. As to 
the future research, a possible direct ion is to use the genetic algorithms that 
are one of optimal techniques for searching unknown parameters, instead of the 
adaptation laws proposed in this study, to find the adjustable parameter vectors 
() f and Og. 
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