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Abstract: Sufficient conditions for the existence of minimal or-
der deadbeat functional observers for singular 2D linear systems de-
scribed by the general singular 2D model are established. A proce-
dure for computing matrices of the functional observers is given and
illustrated by numerical example.
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1. Introduction

The observer problem for singular (descriptor) linear systems has been consid-
ered in many papers and books (Carvalho, Datta, 2002, Fahmy, O'Reilly, 1989,
Kaczorek, 1993, 2002, Luenberger, 1966, O'Reilly, 1983, Shafai, Caroll, 1987,
Watson, 1998). Darouach and Boudayeb (1995) have established the necessary
and sufficient conditions for the existence of a functional observer for standard
continuous-time linear systems. In Kaczorek (2000) a new concept of the perfect
observers for singular continuous-time linear systems has been proposed. Next,
the concept has been extended in Kaczorek (2001a) for standard continuous-
time linear systems and in Kaczorek (2001b,c) for singular two-dimensional
(2D) linear systems. Tsui (1986, 1998) has proposed a different algorithm for
the design of minimal order functional observers for standard linear systems. An
other design approach for minimal order functional observers has been proposed
in Kaczorek (2002).

The most popular models of 2D linear systems are the models proposed by
Roesser (1975), Fornasini and Marchesini (1976, 1978) and Kurek (1985). The
models have been extended for singular 2D models in Kaczorek (1988, 1993).

In this paper a design method of minimal order deadbeat functional observers
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existence of the functional observers will be established and a procedure for
computing the matrices of the observers will be proposed.

2. Problem formulation

Let R™*™ be the set of n x m real matrices and R® := R"*!. Consider the
singular 2D linear system from Kaczorek (1993)

Exiiy j41 = Aoz j+A12i41,j + A2z j41+ Botij+ Biuiy,j +Bgu;,j+1(1a)
yij = Czij,1,5 € Z4 (the set of nonnegative integers) (1b)
where z;; € R", uij; € R™, y; € RP are the semistate, input and output
vectors, respectively and E, A; € R**", By € R**™, [ =0,1,2, C € RP*™ with
E possibly singular (det £ = 0).
It is assumed that
det[Ez1zo — Ag — A121 — Asz] # 0 for some (z,,23) € C x C (2)

(C - the field of complex numbers) and rank C = p.
We are looking for a minimal order r deadbeat functional 2D observer de-
scribed by the equations

Zig1,541 = Fozij + F1ziy1,5 + Fazi j41 + T Bouij + TBiuiy,; + T Boui j41

+Goyij + G1¥it1,; + Gayi j+1 (3a)

wij = Lzyj + Myij, zi; €R", wi; € R, i,j€Z, (3b)
that reconstructs exactly for ¢ > r,j > r the given linear function of

Kz;;(K € R™" is given) (4)
ie.

wi; = Kay; fori>rg>r. (5)

The problem can be stated as follows: Given E, A;, B;,1 =0,1,2,C and K, find
Fie RP*", T € R™*™, Gi € R"™*?, | = 0,1,2; L € R¥*" and M € R¥*? of (3)
such that (5) holds. Solvability conditions for the problem will be established
and a procedure for computation of the matrices of (3) will be derived.

3. Problem solution
Let us define

ei; = zij — TEz;j,1,5 € Z. (6)
Using (6), (1) and (3) we may write

it1,j+1 = Zit1,j+1 — TEzip1 j41 = Fo(esj + TExij)
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TBou,-,- + TB],%;.;.l,j + TBzui,j+1 + G(}C:'..",‘j + G;[ CI;‘+1J

+G2Cz; j11 — T(Aozij + A1Zitr,j + A2 j41

Bouij + Bruiy,j + Baui j41) = Foeij + Fieiy,j + Faei j1 (7)
+(FTE + GoC - TA(])Eij

+(FTE + G1C — TA1)zi41,; + (F2TE 4+ G2C — TA2)z; j41-

From (7) it follows that

ei41,j41 = Foeij + Fiei j + Faeij (8)
if and only if

TA = FTE + GC forl=0,1,2. (9)

From (6) we have 2;; = TExz;; for i > r,j > r if and only if e;; = 0 for
i > 1,5 > 0 and then from (3b), (1b) and (5) we obtain

K = LTE + MC. (10)

Note that the equations (9) and (10) are bilinear with respect to the unknown
matrices F1,l =0,1,2,T and L.
The equations (9) and (10) can be written in the form

TA =[F,G] [ TC‘;E ] for 1 =0,1,2 (11)
and
K:[L,M][ Tc‘?] (12)
By the Kronecker-Capelli theorem the equation (12) has a solution [L, M] if and
only if
TE
rank [ T(f ] =rank | C ] : (13)
K

LEMMA 1 There ezists a matriz T € R¥*™ for some k = 0,1,...,n — p satis-
fying the condition

T.E
rank [TkE ] = rank [ 8

(14)
c K

Jor any K € R¥*™ if and only if

rank [ ,E.", ] =n. (15)
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Proof. To show the necessity note that the condition (14) is satisfied for any K
only if

T E
rank [ i‘:, ] =¥ (16)
From 4l 1 o] 480 & it follows that (16) holds only if (15) is satis-
Cc 07, C
fied.

Now we shall show that if (15) is satisfied, then there exists a matrix Ty, k €
[0,1,...,n — p] such that (14) holds for any K. Without loss of generality
it can be assumed that C = [C,0], detC; # 0. In this case (15) implies
rank E; = n — p, where E = [Ey, Es), Ey € R**P, E; € R**("=?)_ From (16)
for kK = n — p we have rank T,_,Ey = n — p. Then there exists T,,_, satisfying
(16) for any given K if (15) holds. m|

LEMMA 2 Let Qr, be the set of matrices Ty, satisfying the condition (14). The
equation (11) has a solution T} € Qry, [Fi,Gi],l = 0,1,2 for the given matrices
E,A;,1=0,1,2 and C if and only if

T.E T.E
rank C = rank C forl=0,1,2. (17)
K T A

Proof. By the Kronecker-Capelli theorem the equations

T A = [F, G)] { TE,E ] for | =0,1,2 (18)
have solutions [F}, Gy, for I = 0,1,2 and T} € Qr, if and only if
T.E
rank [TEE ] =rank | C for [ =0,1,2. (19)
Ty Ay

By assumption, (14) holds. Thus, from (14) and (19) we have

TkE - TkE
C ] = rank [ka ]:rank l: (8

rank fori=0,1,2 =

K ¢ T

REMARK 1 In a particular case, if

rank C = rank [ _{(i' ] , (20)

then the linear function Kx;; can be reconsiructed evactly by My, where M 1s
the solution of the equation K = MC. In this case k = 0 and Ty = 0. In what



Minimal order deadbeat functional observers 305

REMARK 2 Let C = [C10],K = [K;, K] and T = [T1,Ts] where C; € RP*?,
K, € R7*?, Ty € R™™P. Then from (10) we have (K1, K] = L[T1,T2)E +
M(C,0] and

K2 = LTzE (21)

From (21) it follows that rank Ko < rank T, and the minimal number r of rows
of T> (and also of T) is bounded by the rank of K, i.e. r < rank K.

LEMMA 3 The solution e;; of the equation (8) satisfies the condition
eij=0foralli>randj>r (22)
if and only if
det[l,2129 — Fo — F121 — Fazo] = 2] 25. (23)

Proof. The transition matrix T;; of (8) is defined by (Kaczorek, 1993, Klamka,
1991):

I.(the identity matrix) fori=j=0
T AgTio1 ;-1 4+ AT+ ATy fori+j>0
O(the zero matrix) fori < 0or/and j <0
and
[I,.zlzg — Fy— Fyz — ngz]_l = Z Eﬂjz;(i+1}z;(j+l). (24)
i=0 7=0

Using the technique of division of polynomials and (24) it is easy to show that
T;j=0 foralli>rorfand j>r (25)
if and only if (23) holds.

From the solution

i
eij = E (Ti—k—-1,j-140 + Ti—k,j-141)exo
k=1

3
- Z (Ti-1,j-1-140 + Ti—1,j—142)e0 + Ti—1,5-140€00
=1

of the equation (8) it follows that (21) holds if and only if the condition (25) is
satisfied, what is equivalent to (23). 5}

From the above considerations we have the following recursive procedure for
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Procedure

STEP 1. Find a minimal &k € {1,...,n—p}, k > rank K and the set 2, of
matrices T} satisfying the condition (14).

STEP 2. Choose the matrices Fi,l = 0,1,2 and TeQp, satisfying the condition
(23),

o(F)No(E,A) = ¢ (the empty set) for I =0, 1,2, (26)

where o(F}) (¢(E, A)) denotes the spectrum of the matrix F (of the pair (E, A))
and the condition

C

rank C = rank [ TA; - FT.E

] fori=0,1,2 (27)

is satisfied for the given T € Qr,, 4, E,C.

STEP 3. If there exists F] satisfying the conditions (23), (26) and (27), then find
G| from the equation

GiC =TyA— RT:E forl=0,1,2. (28)
If not, go to step 1 and replace k by &k + 1.

STEP 4. By solving the equation

(29)

K=[LM][TE,E]

find the matrices L and M.

STEP 5. Write the equations (3) of the desired functional observer.

REMARK 3 Note that if the matrices Fi,1 = 0,1,2 and Ty € QU are chosen so
that the conditions (23), (26) and (27) are satisfied, then the equation (28) has
a solution G forl =0,1,2.

THEOREM. Let the singular 2D system (1) satisfy the conditions (2) and (15).
There ezists a deadbeat functional 2D observer of the order v of the form (3) if
for some k € [1,...,n — p| the conditions (17) and (27) hold, and then r = k.

Proof. By Lemma 3 the condition (5) is satisfied and the system (3) is a deadbeat
functional observer of (1) if the matrices F; for [ = 0,1,2 are chosen so that
(23) holds. If there exists k € [1,...,n—p] such that (17) and (27) are satisfied,
then by solving the equations (28) for the given T, 4, E,C and F; we can find
the matrices G; for | = 0,1,2, and next the matrices L and M can be found
fram the eanation (29), 5|
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4. Example

Find the minimal order deadbeat functional observer (3) which reconstructs the
linear function (4) with

[1. 2 3 8 1
B=11 s1 3 =1 1 (30)
for the singular 2D system (1) with
1 0 0 0 0 =2 2 1 =% 2
000000 0 0 0 0 0
E=|00100]|, A4=] 0 1 0 o0 1]/,
00010 0 0 -1 0 0
|00 0 0 1 -1/2 0 0 -1/2 0
[0 0 0 0 o0
&8 -2 =t I =8
Boee | =1 =f @ @ =1
0 0 1 0 o0
|1 0 o0 1/2 0
[0 1 0 -1 1
0 1 1 0 1
A= 1 1 0 i S X (31)
0 0 -1 0 0
| -1 0 0 -1/2 0
[ 1 0 0 1 1 =1
0 1 10 1 0
Bo=|-1 2|, Bi=|2 0|, Bya=|1 0 |,
1 0 0 1 0 2
[ 0 1 10 1 4
1000 0
C=1010 0 o

It is easy to check that the system (1) with (31) satisfies the conditions (2) and
(15) and the condition (20) is not satisfied.
Using the Procedure we obtain:

STEP 1. In this case rank K = 2 and we choose k = 2 and T = [t;;] € R**5.
From (14) we obtain

ti3 tia 15

_ tin 0 ti3 tie t1s || tag tog los | _
Qp, = bor 0 daw dog e rrank | O St 7T | =2 (32)
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since
rank [ c ] = rank 1 00 0 017 rank !C(
0o 1 0 0 0
[tn 0 tiz ti tis |
tox 0 tag t2gq o5
1 0 0 0 0
= rank 0 1 0 0 o (33)
1 2 1 0 1
L L -3 3 ~L % |
: 0 1
STEP 2. In this case we choose Fy = —=F) = Fy = [ 0 0 ] and
0 0 -2 2 -2
Tz_[l 1 -2 1 —2}
and the condition (27) is satisfied for [ = 0,1, 2, since
0 -2 0 0 0
TzA"_F"TzE“[—l 0 00 0]’
1 2 0 00
ToA — L\ THE = lt 0000 0 ] (34)
-1 =2 0 0 0
TzAerTzE‘{ 0 0 00 0]

STEP 3. By solving the equations (28) for i = 0,1,2 and using (34) we obtain
0 -2 1 2 -1 =2
e S N P N
STEP 4. In this case equation (29) has the form

00 -2 2 -2
1 2 1 0 1 10 -2 1 -2
[1—11-11}‘[‘5"""'] 100 0 0

01 0 0

and its solution is given by

172 <1]|2 2
-1/2 0 |1 =1 ]

STEP 5. The desired deadbeat functional 2D observer has the form
?:|1:.1=|-0 1]7:;+]-0 __1.|Z.:J_I.'+|-(..) }~|2€4J.1

) = |
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4 -6 -6 2 -4 2

£ [4 -5 ]“""* [ -5 2 ]“"+1>J’+ [ o8 =i ]““J“
0 -2 1 2 -1 -2

: { - 0 :|yij + [ 00 ]yf+1,j + [ 0 0 }yﬁ,ji‘ls

; -1 ] [ g 3 ]
wij =| 2 zij + Yij -
d [—% B "™V 1 =1 [P

5. Concluding remarks

An approach to the design of minimal order deadbeat 2D functional observers
for singular 2D linear systems described by the general 2D model (1) has been
proposed. A procedure for computation of the matrices of the functional ob-
servers has been proposed and illustrated by a numerical example. The approach
proposed with minor modifications (with replacement of the nilpotent matrices
F;,1 =0,1,2 by Schur matrices) can be also applied to design the minimal order
asymptotic functional observers for singular 2D linear systems. An other ap-
proach is based on solving the generalized Sylvester equations (9) with respect
to the matrix T by the use of the algorithm presented in Carvalho, Datta (2002),
for which finding of the matrices L, M from (29) may be proposed. An open
problem is to establish the necessary and sufficient conditions for solvability of
equations (9) and (29) for given matrices £, Aj,l = 0,1,2 and C.
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