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Abstract : This paper is concerned with adaptive stabilization 
of two coupled viscous Burgers' equations by nonlinear boundary 
controllers. Under the existence of bounded deterministic distur­
bances, the adaptive controllers are constructed by the concept of 
high-gain nonlinear output feedback and the estimation mechanism 
of the unknown parameters. In the controlled system the global 
stability and the convergence of the system states to zero will be 
guaranteed. It is shown that the theory can be generalized to the 
systems with higher-order nonlinearity. 
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1. Introduction 

The Burgers' equation is a simplified fluid flow model which nonetheless exhibits 
some of the important aspects of turbulence. It is often referred to as an approx­
imation to the one-dimensional Navier- Stokes equations. It is also referred to a 
model of traffic flow (Farlow, 1982, Haberman, 1977). The Burgers' equation is 
a natural first step towards developing methods for control of flows. While many 
recent papers (Burns, Kang, 1991, Byrnes, et al., 1998, Henry, 1981, Ito, Yan 
1998, Temam, 1997, Van Ly et al., 1997) have investigated local stabilization 
and global analysis of attractors, the problem of global asymptotic stabilization 
has been investigated in (Kobayashi, 2001, Krstic, 1999, 2000a, 2000b, 2000c). 

One of the most important applications of feedback is to achieve regulation 
and servoaction, that is, to obtain a stable closed-loop system that rejects a 
given class of external disturbances and tracks a given class of reference signals 
with zero asymptotic error. The advantage of the adaptive control is that good 
control performance can be automatically achieved even in the presence of var-
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classes of distributed parameter systems (Kobayashi, 1987, 1988, 1996, 1997, 
2000c, Logemann, Martensson, 1992, 1997, Luo et al. , 1999, Bohm et al., 1998, 
Wen, Balas, 1989). 

T his paper is concerned with adaptive stabilization of two coupled viscous 
Burgers' equations by nonlinear boundary controllers. Under the existence of 
bounded deterministic disturbances, the adaptive controllers are constructed by 
the concept of high-gain nonlinear output feedback and the estimation mecha­
nism of the unknown parameters. In t he controlled system the global stability 
and the convergence of the system states to zero will be guaranteed. It is shown 
that the theory can be generalized to the systems with higher-order nonlinearity. 

2. System description 

Consider the viscous Burgers' system 

Ut(X, t) 

Wt(X, t) 

= E!Uxx(x, t)- a1u(x, t)ux(x, t) + p[w(x, t)- u(x, t)], 
xE(0,1),t>0 

= E2Wxx (x, t) - a2w(x, t)wx(x, t) + p[u(x, t) - w(x, t)], 
X E (0, 1), t > 0 

Ux(O, t) + b1u(O, t) = - h(t)- (JT v(t), Ux(1, t) = h(t) } 
Wx(O, t) + b2w(O, t) = -91(t), Wx(1, t) = 92(t) 

y(t) = [u(O, t), u(1, t) , w(O, t), w(1, t)f, 

(2) 

(3) 

where E1,E2 and pare positive constants, a1,a2,b1 and b2 are constants, h(t), 
h(t), 91(t) and 92(t) are inputs and y(t) is the output. We assume that the 
disturbance vector function v(t) bounded and known, but() is the l-dimensional 
unknown constant vector. For example, we shall consider v(t) such that 

v(t) = [lsi~til· 
cos2t 

It should be noted that the elements of v(t) are not necessarily assumed to 
satisfy a linear, time-invariant, finite-dimensional differential equation. We can 
consider signals such as a periodic rectangular pulse. 

The objective of adapt ive control design is to construct the control input 
fl, h, 91, 92 such that the closed-loop system will be globally stable when the 
system parameters €1, €2, p, a1, a2, b1, b2 and() are unkonwn. 

The proof of existence and uniqueness of solutions is nontrivial for nonlinear 
partial differential equations, especially if the boundary conditions are nonlinear 
too. The well posedness of the closed-loop system has been considered for the 
Burger's equation (Liu, Krstic, 2000a, 2000b, 2000c). In the paper we shall 
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3. Regulator design (non-adaptive case) 

In this section we consider non-adaptive regulator design for the system (1)-(3) 
in the case where fi. E2 , p, a1, a2, b1, b2 and() are known. 

We start from the Lyapunov function 

V(t) = ~ {
1 

[u2(x, t) + w2(x, t)]dx. 
2 lo 

The time derivative of V(t) along the solution of system (1)-(3) is 

V(t) = 1\uut + WWt)dx 

(4) 

= 1
1 
[u(E1Uxx- a1uux)+pu(w- u)+w(E2Wxx- a2wwx)+pw(u- w)]dx 

= f1u(1, t)ux(1, t)- E1u(O, t)ux(O, t)- f1 1
1 
u;dx- ~ 1

1 
(u3 )xdx 

+ f2w(1, t)wx(1, t)- E2w(O, t)wx(O, t)- f21
1 
w;dx- ~2 1

1 

(w3 )xdx 

- p 1
1 

u2 - p 1
1 

w2dx + 2p 1
1 

uwdx 

= E1h(t)u(1, t) + E1b1u2(0, t) + E1!t(t)u(O, t) + E1BT v(t)u(O, t) 

- E1 {
1 
u;dx- a1 u3(1, t) + a1 u3(0, t) - p {

1 
u2 + 2p {

1 
uwdx 

Jo 3 3 Jo lo 
+ f292(t)w(1, t) + E2b2w2(0, t) + E291(t)w(O, t) 

{
1 

2 a2 3 a2 3 {
1 

2 
- f2 lo wxdx- 3w (1, t) + 3w (0, t)- p lo w . 

Here, because 

u(x) = u(O) + 1x Uxdx, 

it holds that 

u2(x) ~ 2u2(0) + 2(1x uxdx) 
2 
~ 2u2(0) + 21

1 
u;dx. 

Thus 

1
1 

u2dx ~ 2u2(0) + 21
1 

u;dx. 

Using this relation and 

(5) 
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we obtain 

(6) 

If we apply a control law 

h(t) = -~'>lu(O,t)-BTv(t)-(bl+1)u(O,t)-*tu2 (0,t), ~'>12:0, ) 

h(t) = -~'>2u(1, t) + *tu2(1, t), ~'>2 2: 0, 

9l(t) = -~'>3w(O , t)- (b2 + 1)w(O, t)- ~w2 (0, t) , "'3 2: 0 , (
7

) 

92(t) = -~'>4w(1, t) + jtw2(1, t), ~'>4 2: 0, 

then we obtain 

(8) 

This implies that V(t) will be bounded and exponentially converge to zero. The 
equilibrium u(x) = 0 and w(x) = 0 is globally exponentially stable in £ 2(0, 1). 

The following theorem holds: 

THEOREM 1 The controller (7) globally exponentially stabilizes the system (1) ­
(3) in £ 2 sense. 

In the case where the boundary conditions are 

Ux(O, t) + b1u(O, t) =-h(t)- B1 T v1(t), Ux(1, t) = h(t) } (g) 
Wx(O, t) + b2w(O, t) = - gl (t)- B1 T v2(t), Wx(1, t) = 92(t) 

we can exponentially stabilize the system by a similar control law. 
However, it follows from the relation (6) that the system with boundary 

conditions · 

ux(O,t)+blu(O,t)=-h(t)-BlTvl(t), u(1,t)=O} 
w(O, t) = 0, w(1, t ) = 0 

(10) 



Nonlinear boundary control of coupled Burgers' eq uations 249 

4. Adaptive regulator design 

In this section we construct an adaptive regulator for the system (1)-(3) in the 
case where ~:1, ~:2, p, a1. a2, b1, b2 and B are unknown. 

Firstly, in place of the controller (7), we shall consider an adaptive controller 

where 

k1(t) = r1u2(0, t), k1(0) > 0, r1 > 0, 
k2(t) = r2u4 (0, t), k2(0) > 0, r2 > 0, 
k3(t) = r3(u2(1, t) + u4(1, t)], k3(0) > 0, r3 > 0, 
. 2 
k4(t) = r4w (0, t), k4(0) > 0, r4 > 0, 

ks(t) = rsw4(0, t), ks(O) > 0, rs > 0, 
~6(t) = r6(w2(1, t) + w4(1, t)], k6(0) > 0, r6 > 0, 

B(t) = Pu(O, t)v(t), P: positive definite matrix 
c¥1(t) = q1u3 (0, t), q1 > 0, 
c¥2(t) = q2u3(1, t), q2 > 0, 
c¥3(t) = q3w3(0, t), q3 > 0, 
c¥4(t) = q4w3(1, t), q4 > 0. 

Then, from (6), the time derivative of V(t) becomes 

V(t) ~ - ~ 11 
u2dx- ~:r(k 1 (t)- (b1 + 1)]u2(0, t)- E1k2(t)u4(0, t) 

- t:t[B(t)- o{ v(t)u(O, t)- E1 [ a1(t)- ;ElJ u3(0, t) 

- ~: 1 k3(t)(u2 (1, t) + u4(1, t)]- E1 [ a2(t) + ;E1J u3(1, t). 

- E2 {
1 

w2dx- ~: 2 [k4 (t)- (b2 + l)]w2(0, t)- E2 ks(t)w4(0, t) 
2 Jo 

- E2 [a3(t)- ~] w3(0, t) 
3€2 

(12) 

- E2k6(t)[w2(1 , t) + w4(1, t)]- E2 [ a4(t) + ;E2J w3(1 , t). (13) 

Here we introduce another non-negative function E(t) by 
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Using (12), (13), we can estimate the time derivative of E(t) 

E(t) ::; -min{ Et, E2} V(t). (15) 

It follows from this that E(t) ::; E(O), and then ki(t) < oo, i = 1, 2, · · ·, 6, 

IIB(t)ll < oo, laj(t)l < oo, j = 1, 2, 3, 4 for any t > 0. Thus, by (12) we obtain 

u(O, t) E L2(0, oo) n L4 (0, oo), u(1, t) E L2(0, oo) n L4 (0, oo), } (16) 
w(O, t) E L2(0, oo) n L4 (0, oo), w(1, t) E L2 (0, oo) n L4 (0, oo). 

Next we shall show the convergence of V (t). Put €min = min{€1,€2}. From 
(13), using the Gronwall lemma (Curtain, Zwart, 1995), we have 

V(t) :5 exp( -Emint)V(O) 

-€1 1t exp[-Emin(t- r)J {[kt(r)- (bt + 1)ju2(0,r) 

+ k2(r)u4 (0, r) + [B(r) - o{ v(r)u(o, r) + [ a 1(r)- ;€1J u3 (0, r)} dr 

- €1 1t exp[-Emin(t- r)J { ka(r)[u2(1, r ) + u4 (1, r)J 

+ [ a2(r) + ;€1J u3 (1, r) } dr 

- €21t exp[-Emin(t- r)J {[k4( r)- (b2 + l)]w2(0, r) 

+ks(r)w4 (0 ,r) + [aa(r)- ;€:] w
3(0, r)} dr 

- €21t exp[-Emin(t- r)J{ k6( r)[w2(1, r) + w4 (1, r)] 

+ [ a 4 (r) + ;€2J w3 (1, r)} dr 

:5 exp( -Emint)V(O) + €tCl,max 1t exp[-Emin(t- r)J { u2(0, r) + u4 (0, r) 

+ iu(O, r)l + lu3 (0, r)l + u2(1, r) + u4 (1, r) + lu3 (1, r)l} dr, 

+ exp( -Emint)V(O) + €2C2,max 1t exp[-Emin(t- r)] { w2(0, r) + w4 (0, r) 
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where we take the supremum on t;:::: 0 and 

Cl,max =max { supikl (t) - (bl + 1)1, sup lk2(t)j, sup I[O(t) - o{ v(t)i , 

sup la1(t)-
3
:

1

1
1, sup jk3(t)j, sup ja2(t) + ;€1

1
1}, 

C2,max = max{supjk4(t)- (b2 + 1)j,supjks(t)j,, 

sup la3(t)- ;€2
2

1, sup lk6(t)j , sup la4(t) + ;:
2
1}. 

We shall estimate each integral terms. First 

1t exp[-Emin(t- r)]u2(r)dr 

1 t 

~ 12 

exp[-t:min(t- r)]u2(r)dr + l exp[-t:min(t- r)]u2(r)dr 
2 

~ lt exp( -Eminr)u2(t- r)dr + lt exp[-t:min(t- r)]u2(r)dr 
2 2 

~ exp (- €~int) lt u2(t- r)dr 
2 

+max~$T$t (exp[-t:min(t- r)]) lt u2(r)dr 
2 

~ exp (- €~int) 1
00 

u2(r)dr + loo u2(r)dr. (18) 
2 

When u(t) E L2 (0, oo), 

1t exp[-t:min(t- r)]u2(r)dr--> 0 as t--> oo. (19) 

In a similar way for u(t) E L4(0, oo), we obtain 

1t exp[-t:min(t- r)]u4(r)dr--> 0 as t--> oo. (20) 

Next, using the Cauchy-Schwartz inequality we can have the following rela­
tions 

1t exp[- t:min(t- r)]iu(r)jdr 

I I 

~ [1t exp[- €min(t - r)]drr [1t exp[-€min(t- r)]u2(r)dr r 
1 l 

< (-1-l 2 r t exvr- ~:.,;, (t- r)lu2(r)dr 12 
(21) 
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and 

fat exp[-Emin(t- r)]iu3(r)idr 

1 1 

:::; [fat exp[-Emin(t- r)]u2 (r)dr] 
2 

[fat exp[-Emin(t- r)]u4 (r)dr] 
2

. (22) 

For u(t) E L 2 (0, oo) n L 4 (0, oo) it holds that 

fat exp[-Emin(t- r) ]iu(r )idr---> 0 as t---> oo, 

fat exp[-Emin(t- r) ]iu3 (r)idr---> 0 as t---> oo. 

From (17), (19), (20), (23) and (24) we can show that 

fa 1 

[u2(x, t) + w2(x, t)]dx ---> 0 as t---> oo. 

The following theorem holds: 

(23) 

(24) 

(25) 

THEOREM 2 If the adaptive control law (11), {12) is applied to the system (1)­
(3 ), then the resulting closed-loop system will be globally stable, the equilibrium 
u(x) = 0 and w(x) = 0 will be regulated to zero in L2(0, 1) and the signals 
ki(t) (i = 1, 2, ... , 6), e(t), O!j (t) (j = 1, 2, 3, 4) will be bounded for any t 2: 0. 

REMARK 1 In order to globally stabilize the system (1)-(3), we can also apply 
the adaptive control law such that o:(t) = o:1 (t) = -o:2(t) and 

a(t) = q[u3(0, t) - u3 (1, t)], q > 0 

in the control law {11), {12). 

5. System with mixed boundary conditions 

In this section we shall consider the Burgers' system (1) with the following 
boundary conditions 

Ux(O, t) + b1u(1, t) =-h(t)- BTv(t), Ux(1, t) = h(t) } (26) 
Wx(O, t) + b2w(1, t) = -gl(t), Wx(1, t) = 92(t) 

The time derivative of V (t) = ~ J0
1 

( u2 + w2 )dx along the solution of system (1 ), 
(26) is 
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= la1 

[u(€1Uxx- a1uux)+pu(w- u)+w(E2Wxx- a2wwx)+pw(u- w)]dx 

= €1u(1, t)ux(1, t)- €1u(O, t)ux(O, t)- E1 {
1 
u;dx- a1 ( (u3 )xdx 

lo 3 lo 
+ E2w(1, t)wx(1, t)- E2w(O, t)wx(O, t)- E2 {

1 
w;dx- a

2 {
1 
(w 3 )xdx lo 3 lo 

- p 11 
u

2 
- p 11 

w
2
dx + 2p 11 

uwdx 

= E1f2(t)u(1, t) + E1b1u(O, t)u(1, t) + E1!1(t)u(O, t) + E1BT v(t)u(O, t) 

- E1 {
1 

u;dx- a1 u3(1, t) + a1 u3 (0, t)- p ( u2 + 2p {
1 

uwdx 
Jo 3 3 lo lo 

+ E292(t)w(1, t) + E2b2w(O, t)w(1, t) + E291(t)w(O, t) 

-E2 {
1 

w;dx- a2 w3(1,t)+ a2 w3(0,t)-p {
1 

w2 . 
Jo 3 3 lo 

Here, since 

u(!) = u(O) + [ u,dx <: u(O) + J [ uidx, 

u(O)u(l) <: u'(O) + lu(O)I J [ uidx 

::; ( 1 + 2~2) u2(0) + v2211 u;dx 

for any v > 0. 
On the other hand, using the relation 

u'(x) = [ u(O) + [ u,dx r <: u'(O) + 2lu(O)I J l uidx + [ u!dx 

we have for 8 > 0 

11 

u2 dx::; (1 + 82)u2
(0) + ( 1 + ; 2 ) 11 

u;dx, 

which implies that 

11 82 11 
u2 dx > -- u2dx- 82u 2(0). 

0 X - 82 + 1 0 

From (28) 

(27) 

(28) 

(29) 
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(30) 

Thus, using (29) and (30) in (27) we obtain 

0 t:18
2 

( Jb1Jv
2

) {
1 

2 [ a1 2 ] V(t) ~- 82 + 1 1- - 2- Jo u dx + t:1u(1, t) h(t)-
3
E
1 
u (1, t) 

+ E1u(O, t) [fi(t) + OT v(t) + ( 1 + 2~2 ) Jb1Ju(O, t) 

+ 82 (1 - JbiJv
2

) u(O, t) + ~u2 (0, t)] 
2 3E1 

- 8~2!21 ( 1- Jb2~JL2 ) 11 w2dx + E2w(1, t) [92(t)- ;E22 w2(1, t)] 
+«:2w(O,t) [91(t) + (1 + 2~2 ) Jb2Jw(O,t) 

+ 82 ( 1- Jb2~JL
2

) w(O, t) + ;E: w2(0, t)] 0 (31) 

Since there exist v > 0 and JL > 0 such that 1 - Jb1Jv2 /2 > 0, 1 - Jb2JJL2 /2 > 0, 
the adaptive control law (11), (12) can globally stabilize the system (1) with 
the boundary condition (26)0 

6. The system with higher-order nonlinearity 

In this section we shall show that we can generalize the theory to the following 
system with higher-order nonlinear terms (Farlow, 1982, Haberman, 1977) for 
positive integers m and n 

Ut(X, t) = E1Uxx(x, t)- a1um(x, t)ux(x, t) + p[w(x, t)- u(x, t)], } (
32

) 
Wt(x, t) = E2Wxx(x, t)- a2wn(x, t )wx(x, t) + p[u(x, t)- w(x, t)], 
X E (0, 1), t > 0 

ux(O,t)+b1u(O,t)=-fi(t)-0Tv(t), Ux(1,t)=f2(t)} (33) 
Wx(O, t) + b2w(O, t) = - g1(t), Wx (1, t) = 92(t)o 

For this system the time derivative of V(t ) = t J;(u2 + w2 )dx becomes 

V(t) ~- ~ 11 
u2dx + E1u(1, t) [h (t)- E 1 (~1+ 2) um+l(1, t)] 

' - • .fn ~\ r J: (~\ I [JT • .t-~o\ '- (J.._ ..L 1 ,.,(() +\ ..L 
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-~ 11 
w

2
dx + E2w(l, t) [g2(t)- E2 (:~ 2) wn+1(1, t)] 

+E2w(O,t) [g1(t)+(b2+l)w(O,t)+ E2 (:~ 2)wn+l(O,t)] 0 

We apply the following adaptive control law to the system 

where 

fr(t) = -k1(t)u(O, t)- k2(t)u2m+l(O, t)- B(t) v(t) ~ T ) - a1(t)um+1(0, t) , 
h(t) = -k3(t)[u(l, t) + u2m+1(1, t)]- a2(t)um+l(l, t) , 
91 (t) = -k4(t)w(O, t)- k5(t)w2n+l(O, t)- a3(t)wn+l(O, t), 
92(t) = -k6(t)[w(l, t) + w2n+l(l, t)]- a4(t)wn+1(l, t) , 

k1(t) = r1u2(0, t), k1(0) > 0, r1 > 0, 
k2(t) = r2u2(m+1)(0, t), k2(0) > 0, r2 > 0, 
k3(t) = r3[u2(l, t) + u2(m+l)(l, t)], k3(0) > 0, r3 > 0, 

0 2 
k4(t) = r4w (0, t), k4(0) > 0, r4 > 0, 
k5(t) = r5w2(n+1)(0, t), k5(0) > 0, r5 > 0, 
~6(t) = r5[w2(l, t) + w2(n+l)(l, t)], k6(0) > 0, r6 > 0, 

B(t) = Pu(O, t)v(t), P : positive definite matrix 
0:1(t) = Q1Um+2(0, t), Q1 > 0, 
0:2(t) = Q2um+2(1, t), Q2 > 0, 
a3(t) = q3wn+2(0, t), q3 > 0, 
a4(t) = Q4Wn+2(1, t) , Q4 > 0° 

Then the time derivative of V(t) can be estimated by 

255 

(34) 

(35) 

(36) 

V(t) ~- ~ 11 
u2dx- E1[k1(t)- (b1 + l)]u2(0, t)- E1k2(t)u2(m+1)(0, t) 

- El[B(t) - o{ v(t)u(O, t) - f1 [a1 (t) - f1 (~1+ 2)] um+2(o, t) 

- E1k3(t)[u2(l, t) + u2(m+l)(l, t)]- f1 [ a2(t) + € 1 (~ 1+ 
2
)] um+2(1, t)o 

- f2 [
1 

w2dx- E2[k4(t)- (b2 + l)]w2(0, t)- E2 k5(t)w2(n+1)(0, t) 
2 lo 

- E2 [a3(t)- a2 ] w(n+2)(0, t) 
E2(n + 2) 

- f2k6(t)[w2(1, t)+w2(n+l)(l, t)]- E2 [a4(t)+ €2 (:~ 2)] wn+2(1, t)o (37) 

Here we introduce another non-negative function E(t) by 
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+ 2E2 [k4(t)- (b2 + 1)]2 + 2E2 k~(t) + 2E2 k~(t) 
r4 rs r6 

+ .:.!.[B(t)- o{ p-l[B(t)- B] + ...:.!.._ [al(t)- ( al )] 

2 

2 2qt Et m + 2 

~: 1 [ a 1 
] 

2 

+- a2(t) + ---
2q2 Et(m+2) 

E2 [ a2 ] 
2 

~: 2 [ a2 ] 
2 

+ 2q3 a 3(t)- E2(n + 2) + 2q4 a 4 (t) + E2(n + 2) · 

Using (36), (37), we can estimate the time derivative of E(t) 

E(t) ::; -min{ Et, ~:2} V(t). 

(38) 

(39) 

It follows from the above t hat E(t) ::; E (O), and then ki(t) < oo, i = 1, 2, · · ·, 6, 
IIB(t)ll < oo, laj(t)l < oo, j = 1, 2, 3, 4 for any t > 0. Thus, by (36) we obtain 

u(1 , t) E L2 (0, oo)n£2(m+l)(O,oo), (
4

0) 
u(O, t) E £ 2 (0 , oo) n £ 2(m+l}(O, oo), } 

w(O, t) E £ 2 (0, oo) n £ 2(n+l}(O, oo ), 
w(1, t) E £ 2 (0, oo) n £ 2(n+l)(O, oo) . 

For u(t) E £ 2 (0, oo) n £ 2(m+l}(O, oo) we have 

it exp[-Emin(t- r)]u2(r)dr--> 0 as t--> oo, ( 41) 

it exp[-Emin(t- r)]u2(m+l}(r)dr--> 0 as t--+ oo. (42) 

Moreover, from the Cauchy-Schwartz inequality we can have the following re­
lations 

it exp[-Emin(t- r)]iu(r )idr 

1 l 

:S c:in) 2 [it exp[-Emin(t -r)ju
2
(r)dr] 

2 

( 43) 

and 

1 

::; [it exp[- Emin(t -r)]u2(r )dr] 
2 

l 

.. r rt ..... r - ( ~ - \1 •. 2(m+l) (_\-J_l
2 
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Thus for u(t) E L2 (0,oo) n L2(m+l)(O,oo) it also holds that 

1t exp[- Emin(t- r)]!u(r)!dr--+ 0 as t--+ oo. (45) 

1t exp[- Emin(t - r)]!um+2(r)!dr--+ 0 as t--+ oo. (46) 

From (37), (40), (41), (42), (45) and (46) we can also obtain that 

11 

[u2 (x, t) + w 2(x , t)]dx--+ 0 as t--+ oo. ( 47) 

The adaptive controller (35), (36) can globally stabilize the system (32), (33). 

7. Conclusion 

We have investigated the adaptive stabilization of two coupled viscous Burgers' 
equations by nonlinear boundary controllers. Under the existence of bounded 
deterministic disturbances, the adaptive controller is constructed by the concept 
of high-gain nonlinear output feedback and the estimation mechanism of the 
unknown parameters. In the controlled system the global stability and the 
convergence of the system states to zero is guaranteed. We have also shown that 
the theory can be generalized to the systems with higher-order nonlinearity. It 
should be noted that any finite number of coupled Burgers' equations can be 
handled with the method of the paper. 
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