Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
We show that universal indestructibility for both strong compactness and supercompactness is consistent with the existence of two strongly compact cardinals. This is in contrast to the fact that if κ is supercompact and universal indestructibility for either strong compactness or supercompactness holds, then no cardinal λ > κ is measurable.
Wydawca
Rocznik
Tom
Strony
131--135
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- Department of Mathematics, Baruch College of CUNY, New York, NY 10010, U.S.A.
Bibliografia
- [1] A. Apter and M. Gitik, The least measurable can be strongly compact and indestructible, J. Symbolic Logic 63 (1998), 1404-1412.
- [2] A. Apter and J. D. Hamkins, Universal indestructibility, Kobe J. Math. 16 (1999), 119—130.
- [3] J. Cummings, M. Foreman and M. Magidor, Squares, scales, and stationary reflection, J. Math. Logic 1 (2001), 35—98.
- [4] M. Gitik, Chanqinq cofinalities and the nonstationary ideal, Israel J. Math. 56 (1986), 280-314.
- [5] -, On closed unbounded sets consisting of former regulars, J. Symbolic Logic 64 (1999), 1-12.
- [6] J. D. Hamkins and W. H. Woodin, Small forcing creates neither strong nor Woodin cardinals, Proc. Amer. Math. Soc. 128 (2000), 3025—3029.
- [7] R. Laver, Making the supercompactness of κ indestructible under к-directed closed forcing, Israel J. Math. 29 (1978), 385—388.
- [8] A. Lévy and R. Solovay, Measurable cardinals and the continuum hypothesis, ibid. 5 (1967), 234-248.
- [9] R. Solovay, Strongly compact cardinals and the GCH, in: Proceedings of the Tarski Symposium, Proc. Sympos. Pure Math. 25, Amer. Math. Soc., Providence, 1974, 365-372.
- [10] R. Solovay, W. Reinhardt and A. Kanamori, Strong axioms of infinity and elementary embeddings, Ann. Math. Logic 13 (1978), 73—116.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0006-0046