PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CDM mechanisms-based modelling of tertiary creep: ability to predict the life of engineering components

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper demonstrates how computational CDM can be used to predict the behaviour of structural components, ranging from modest stress concentrators to the growth of cracks by creep. Size effects in CDM analysis are addressed, and it is shown how a non-local CDM approach can be used to predict the observed crack tip behaviour. The proviso being that the length scales, associated with the damage fields and gradients, be modelled to comply with continuum theory. It is shown how damage state variable theories may be used to provide traceability from the physics of micro-mechanisms to the macro-material behaviour described by constitutive equations. The paper presents a detailed analysis of creep rupture in ferritic steel weldments, and shows how multi-axial stress rupture criteria, weldment phase dimensions, and constitutive equations for each material phase of the weld, can be used in Finite Element CDM analyses to predict the results of experiments carried out on butt-welded pipes and cross-welded tension testpieces. Original results are presented which show how the above CDM techniques have been used to perform a three-dimensional CDM high-temperature creep rupture analysis of a welded cylinder-cylinder pressure vessel intersection; and, to predict damage initiation and crack growth. The paper also demonstrates how CDM conservatively predicts the vessel lifetime; and, how the experimentally observed weld failure mechanism is well predicted.
Rocznik
Strony
103--132
Opis fizyczny
Bibliogr. 43 poz., rys., wykr.
Twórcy
  • The University of Manchester, School of Mechanical, Aerospace and Civil Engineering, Manchester, U.K.
Bibliografia
  • 1. BRITISH STANDARDS INSTITUTION, Specification for design and construction of ferrous piping installations for and in connection with land boilers, BS 806, 1993.
  • 2. BRITISH STANDARDS INSTITUTION, Specification for design and manufacture of water-tube steam generating plant (including superheaters, reheaters and steel tube economisers), BS 1113, 1989.
  • 3. BRITISH STANDARDS INSTITUTION BSi PD 5500, Specification for unfired fusion welded pressure vessels, BSi PD 5500: 2003
  • 4. ASME, BOILER PRESSURE VESSEL CODE, CODE CASE: NUCLEAR COMPONENTS, CASE N-47-29 class 1 components in elevated temperature service, Section II, Division 1, 1990.
  • 5. R5 ISSUE 3, Assessment procedures for the high temperature response of structures, British Energy Generation Ltd, Gloucester, UK., 2003.
  • 6. J. R. Rice, Mathematical analysis in the mechanics of fracture – an advantised treatise, H. Liebowitz [Ed.], II, Academic Press, 1968.
  • 7. D. R. Hayhurst, C. J. Morrison and P. R. Brown, Creep crack growth, Proceedings of the 3rd IUTAM Symposium, Creep in Structures, Leicester UK, 1980, 564–574, Springer-Verlag, Berlin, Heidelberg, New York 1981.
  • 8. D. R. Hayhurst, Creep rupture under multi-axial states of stress, J. Mech. Phys. Solids, 20, 381–390, 1972.
  • 9. D. R. Hayhurst, Engineering approaches to high-temperature design, Chap. 3, Pineridge Press, Swansea 1983.
  • 10. M. Othman, D. R. Hayhurst and B. F. Dyson, Skeletal point stresses in circumferentially notched tensions bars undergoing tertiary creep modelled with physically-based constitutive equations, Proc. R. Soc. Lond. A. 441, 343–358, 1993.
  • 11. D. R. Hayhurst, Materials data bases and mechanisms-based constitutive equations for use in design, 167–205, Chapter [in:] Creep Damage in Materials and Structures, A. Altenbach and J. J. Skrzypek, Springer-Wein, New York 1999.
  • 12. D. R. Hayhurst, Materials data requirements for computer simulation in design and manufacturing, Chap. 4. Computer-aided-design and new materials, 189–224, [in:] J-P. Caliste, A. Truyol and J. Westbrook [Eds.], Thermodynamic modelling and materials data engineering, Springer, Berlin, Heildelberg 1998.
  • 13. D. R. Hayhurst, Stress redistribution and rupture due to creep in a uniformly stretched thin plate containing a circular hole, J. Appl. Mech., 40, 244–256, 1973.
  • 14. D. R. Hayhurst, P. R. Dimmer and M. W. Chernuka, Estimates of the creep rupture lifetime of structures using the finite element method, J. Mech. Phys. Solids, 23, 335–355, 1975.
  • 15. D. R. Hayhurst and B. Storakers, Creep rupture of the andrade shear disc, Proc. R. Soc. Lond. A., 349, 369–382, 1976.
  • 16. D. R. Hayhurst, P. R. Dimmer and C. J. Morrison, Development of continuum damage in the creep rupture of notch bars, Phil. Trans. Roy. Soc. Lond. A., 316, 103–129, 1984.
  • 17. D. R. Hayhurst, Creep continuum damage mechanics: A unifying theme in hightemperature design, High-Temperature Structural Design, ESIS 12, L. H. Larson [Ed.], Mechanical Engineering Publications, London, 317–334, 1992.
  • 18. D. R. Hayhurst, C. J. Morrison and F. A. Leckie, The effects of stress concentrations on the creep-rupture of tension panels, J. Appl. Mech., 42, 61–618, 1975.
  • 19. W. Goodall and R. A. Ainsworth, Failure of structure by creep, Proc. 3rd Int. Conf. Press. Vess. Tech., Tokyo, vol. II, ASME, 871–882, 1977.
  • 20. V. P. Sdobyrev, Long-term strength of alloy EI-437B under complex stresses, Izv. Akad. Nauk SSSR, Otd. Tech. Nauk 4, 92, 1958.
  • 21. P. W. Bridgman, Large plastic flow and fracture, McGraw Hill, New York 1952.
  • 22. D. R. Hayhurst, P. R. Brown and C. J. Morrison, The role of continuum damage in creep crack growth, Phil. Trans. R. Soc. A., Lond, 311, 131–158, 1984.
  • 23. F. R. Hall, D. R. Hayhurst and P. R. Brown, Prediction of plane-strain creep-crack growth using continuum damage mechanics, Int. Jnl. Damage Mech., 15, 353–383, 1996.
  • 24. F. R. Hall and D. R. Hayhurst, Modelling of grain size effects in creep crack growth using a non-local continuum damage approach, Proc. R. Soc. Lond. A, 433, 405–421, 1991.
  • 25. D. J. Gooch and S. T. Kimmins, Type IV Cracking in 0. Cr 0.5Mo 0.25V/2.25Cr 1Mo weldments, [in:] B. Wilshire, R. W. Evans, Proceedings of the Third International Conference on Creep and Fatigue of Engineering Materials and Structures, Swansea 1987.
  • 26. F. R. Hall and D. R. Hayhurst, Continuum damage mechanics modeling of high temperature deformation and failure in a pipe weldment. Proc. R. Soc. Lond., A 433, 383, 1991.
  • 27. M. C. Coleman, J. D. Parker and D. J.Walters, The behaviour of ferritic weldments in thick section 0.5Cr 0.5Mo 025V pipe at elevated temperature. Int. J. Pressure Vessels and Piping, 18, 277, 1985.
  • 28. A. Fairman, ERA Project 4080, The industry creep programme, materials/analysis panel, Preliminary metallographic findings of failed 0.5Mo V uni-axial cross-welded testpieces, ERA Report No. MAP/64/95, 1995.
  • 29. F. Vakili-tahami, D. R. Hayhurst and M. T. Wong, High-temperature creep rupture of low alloy ferritic steel butt-welded pipes subjected to combined internal pressure and end loadings, Chapter 5 [in:] Reference Stress Methods – Analysing Safety and Design, Ian W. Goodall [Ed.], IMechE., Professional Eng. Pub., Bury St Edmunds and London 2003.
  • 30. I. J. Perrin, and D. R. Hayhurst, Creep constitutive equations for a 0.5 Cr 0.5 Mo 0.25 V ferritic steel in the temperature range 600◦ C to 675◦ C, J. Strain Anal., 31, 299–314, 1996.
  • 31. I. J. Perrin and D. R. Hayhurst, Continuum damage mechanics analyses of Type IV creep failure in ferritic steel cross-weld specimens. Int. J. Press Vessels and Piping, 76, 599, 1999.
  • 32. B. F. Dyson, A. K. Verma and Z. C. Szkopiak, The influence of stress state on creep resistance; experiments and modelling, Acta Metall., 29, 1573–1580, 1981.
  • 33. B. F. Dyson and D. McLean, Particle-coarsening, σ0, and tertiary creep, Acta Met., 30, 17–27, 1983.
  • 34. B. F. Dyson, Creep fracture of metals: mechanisms and mechanics, Rev. Phys. Appl., 23, 605–613, 1988.
  • 35. R. J. Hayhurst, F. Vakili-Tahami and D. R. Hayhurst, Type IV and coarse grained haz creep rupture of ferritic steel uni-axially loaded crossweld testpieces: verification of 3-D parallel CDM software, DAMAGE XXX using 2-D analyses and experiments, UMIST RESEARCH REPORT No: DMM. 03. 01 (revised), 2004.
  • 36. Z. L. Kowalewski, D. R. Hayhurst and B. F. Dyson, Mechanisms-based creep constitutive equations for an aluminium alloy, J. Strain Anal., 29, 309–316, 1994.
  • 37. R. Mustata and D.R. Hayhurst, Creep constitutive equations for a 0.5Cr 0.5Mo 0.25V ferritic steel in the temperature range 565◦C – 675◦C, Int. Jnl. Press. Vess. and Piping, 82, 363–372, 2005.
  • 38. R. J. Hayhurst, R. Mustata and D. R. Hayhurst, Creep constitutive equations for Parent, Type IV, R-HAZ and weld material in the range 565–640◦C for Cr-Mo-V weldments, Int. Jnl. Press. Vess. and Piping, 82, 137–144, 2005.
  • 39. R. J. Hayhurst, F. Vakili-Tahami, R. Mustata and D. R. Hayhurst, Thickness and multi-axial stress rupture criteria of the type iv component of a ferritic steel weld, Jnl. Strain Analysis, 39, 6, 729–743, 2004.
  • 40. G. Patel, R5 medium bore branch life assessment, British Energy, Barnwood, Report E/REP/ATEC/005/GEN/01, 2002.
  • 41. G. Patel, Creep life assessment of weld trunion and branch components using the R5 procedure, Int. J. Pressure Vess and Piping, 80, 695–704, 2003.
  • 42. S. M. Chilcott, Private communication, Re: Metallurgical examination of a medium bore branch vessel after testing at elevated temperature and pressure, Confidential British Energy Engineering Division Report: E/EAN/MATS/0024/AGR/01, July 2001.
  • 43. D. R. Hayhurst, R. J. Hayhurst and F. Vakili-Tahami, CDM predictions of creep damage initiation and growth in ferritic steel weldments in a medium bore branched pipe under constant pressure at 590C using a 5-material model, to appear: Proc. R. Soc. Lond.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0006-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.