PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Yield criteria in anisotropic finite elasto-plasticity

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with several descriptions of the yield criteria, within the constitutive framework of anisotropic finite multiplicative elasto-plasticity. We put into evidence appropriate yield criteria, denned either in stress or strain spaces and we analyse the Eulerian setting attached to Sigma-models, first described in relaxed configuration, when Sigma represents the Mandel's stress measure or the quasistatic Eshelby stress tensor. We compare our anisotropic model with the elasto-plastic model, usually adopted in computational finite plasticity.
Rocznik
Strony
81--102
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Faculty of Mathematics and Informatics, University of Bucharest str. Academiei 14, 010014 Bucharest, Romania
Bibliografia
  • 1. S. Cleja-Tigoiu, Large elasto-plastic deformations of materials with relaxed configurations – I. Constitutive assumptions, II. Role of the complementary plastic factor, Int. J. Engng. Sci., 28, 171–180, 273–284, 1990.
  • 2. S. Cleja-Tigoiu and E. Soós, Material symmetry of elastoplastic materials with relaxed configurations, Rev. Roum. Math. Pures Appl., 34, 513–521, 1989.
  • 3. S. Cleja-Tigoiu and E. Soós, Elastoplastic models with relaxed configurations and internal state variables, Appl. Mech. Rev., 43, 131–151, 1990.
  • 4. S. Cleja-Tigoiu, Consequences of the dissipative restrictions in finite anisotropic elastoplasticity, International Journal of Plasticity, 19, 1917–1964, 2003.
  • 5. S. Cleja-Tigoiu, Dissipative nature of plastic deformations in finite anisotropic elastoplasticity, Math. Mech. Solids, 8, 6, 575–614, 2003.
  • 6. S. Cleja-Tigoiu and G.A. Maugin, Eshelby’s stress tensors in finite elastoplasticity, Acta Mechanica, 139, 231–249, 2000.
  • 7. S. Cleja-Tigoiu, Nonlinear elasto-plastic deformations of transversely isotropic material and plastic spin, Int. J. Engng. Sci., 38, 737–763, 2000.
  • 8. S. Cleja-Tigoiu, Orthotropic !-models in finite elasto-plasticity, Revue Roumaine de Mathématiques Pures et Appliquées, 45, 219–227, 2000.
  • 9. B. Halphen, Sur le champ des vitesses en thermoplasticité finie, International Journal of Solids and Structures, 11, 947–960, 1975.
  • 10. B. Halphen and Q. S. Nguyen, Sur les matériaux standards généralisés, Journal de Mécanique, 14, 39–63, 1975.
  • 11. M.T. Huber (1872–1950), Specific work of strain as a measure of material effort, Archieves of Mechanics, 56, 3, 171–190, 2004.
  • 12. J. Kratochvil, Finite-strain theory of crystalline elastic- inelastic materials, J. Applied Physics, 41, 1470–1479, 1971.
  • 13. A. Krawietz, Konvexität und Normalität bei elastisch-plastischem Material, Ingenieur- Archiv, 51, 257–274, 1981.
  • 14. I-Shih Liu, On representations of anisotropic invariants, Int. J. Engng. Sci., 40, 1099–1109, 1982.
  • 15. J. Lubliner, Normality rules in large-deformation plasticity, Mechanics of Materials, 5, 35–48, 1986.
  • 16. J. Lubliner, Plasticity theory, Macmillan Publ. Comp., New-York, Collier Macmillan Publ., London 1990.
  • 17. M. Lucchesi and P. Podio–Guidugli, Materials with elastic range. A theory with a view toward applications, Part II, Archive for Rational Mechanics and Analaysis, 110, 9–42, 1990.
  • 18. M. Lucchesi and M. Šilhavý, Il’yushin’s conditions in non-isothermal plasticity, Archive for Rational Mechanics and Analaysis, 113, 121–163, 1991.
  • 19. J. Mandel, Plasticité classique et viscoplasticité. CISM- Udine, Springer-Verlag, Vienna, New York 1972.
  • 20. J. J. Marigo, Constitutive relations in plasticity, damage and fracture mechanics based on a work property, Nuclear Engineering and Design, 114, 249–272, 1989.
  • 21. C. Miehe, A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric, Computer Methods in Applied Mechanics and Engneering, 159, 223–260, 1998.
  • 22. G.A. Maugin, Eshelby stress in elastoplasticity and fracture, International Journal of Plasticity, 10, 393–408, 1994.
  • 23. W. Noll, Materially uniform simple bodies with inhomogeneities, Archive for Rational Mechanics and Analysis, 27, 1–32, 1967.
  • 24. J.R. Rice, Inelastic constitutive relations for solids: an internal variable theory and its applications to metal plasticity, J. Mech. Phys. Solids, 19, 433–455, 1971.
  • 25. J.C. Simo, Numerical analysis and simulation of plasticity, [in:] P.G. Ciarlet and J.L. Lions [Eds.], Handbook of Numerical Analysis, Vol. VI, Elsevier, 185–499, Amsterdam 1998.
  • 26. C. Teodosiu, A dynamic theory of dislocations and its applications to the theory of the elastic-plastic continuum [in:] Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Witt, and R. Bullough [Eds.], Nat. Bur. Stand. (U.S.), Spec. Publ., 317, II, 837–876, 1970.
  • 27. C. Teodosiu and F.Sidoroff, A finite theory of elastoplasticity of single crystals, Inter. J. Eng. Sci., 14, 713–723, 1976.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0006-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.