Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
There are three kinds of Benz planes: Mobius planes, Laguerre planes and Minkowski planes. A Minkowski plane satisfying an additional axiom is connected with some other structure called a nearaffine plane. We construct an analogous structure for a Laguerre plane. Moreover, our description is common for both cases.
Wydawca
Rocznik
Tom
Strony
87--97
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Mathematics and Informatics, Żolnierska 14, 10-561 Olsztyn, Poland, jjakob@matman.uwm.edu.pl
Bibliografia
- [1] J. André, Some new results on incidence structures, in: Colloquio Internazionale sulle Teorie Combinatori, Vol. II, Atti dei Convegni Lincei 17, 1976, 201–222.
- [2] W. Benz, Vorlesungen über Geometrie der Algebren, Springer, Berlin, 1973.
- [3] Y. Chen, A characterization of some geometries of chains, Canad. J. Math. 26 (1974), 257–272.
- [4] P. Dembowski, Finite Geometries, Springer, Berlin, 1968.
- [5] W. Heise und H. Seybold, Das Existenzproblem der Möbius-, Laguerre- und Minkowski-Erweiterungen endlicher affiner Ebenen, Sitz. Ber. Bayer. Akad. Wiss. Math.-Nat. Kl. 1975, 43–58.
- [6] J. Jakóbowski, Nearaffine planes related to pseudo-ordered fields, Bull. Polish Acad. Sci. Math. 50 (2002), 345–360.
- [7] H. J. Kroll, Anordnungsfragen in Benz-Ebenen, Abh. Math. Semin. Univ. Hamburg 46 (1977), 217–255.
- [8] R. Löwen and R. U. Pfüller, Two-dimensional Laguerre planes over convex functions, Geom. Dedicata 23 (1987), 73–85.
- [9] N. Percsy, Finite Minkowski planes in which every circle-symmetry is an automorphism, ibid. 10 (1981), 269–282.
- [10] H. A. Wilbrink, Finite Minkowski planes, Geom. Dedicata 12 (1982), 119–129.
- [11] —, Nearaffine planes, ibid. 12 (1982), 53–62.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0005-0097