Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
It is proved that the Köthe–Bochner function space E(X) has property β if and only if X is uniformly convex and E has property β. In particular, property β does not lift from X to E(X) in contrast to the case of Köthe–Bochner sequence spaces.
Wydawca
Rocznik
Tom
Strony
75--85
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- Institute of Mathematics, Electrical Engineering Faculty, University of Technology, Piotrowo 3a, 60-965 Poznań, Poland, kolwicz@math.put.poznan.pl
Bibliografia
- [1] A. V. Bukhvalov, On an analytic representation of operators with abstract norm, Izv. Vyssh. Ucheb. Zaved. 11 (1975), 21-32.
- [2] C. Castaing and R. Płuciennik, Property (H) in Köthe Bochner spaces, Indag. Math. N.S. 7 (1996), 447-459.
- [3] J. Cerda, H. Hudzik and M. Mastyło, Geometric properties of Köthe Bochner spaces, Math. Proc. Cambridge Philos Soc. 120 (1996), 521-533.
- [4] Y. Cui, R. Płuciennik and T. Wang, On property (ß) in Orlicz spaces, Arch. Math. 69 (1997), 57-69.
- [5] T. Dominguez, H. Hudzik, G. López, M. Mastyło and B. Sims, Complete characterization of Kadec Klee properties in Orlicz spaces, Houston J. Math. 29 (2003), 1027-1044.
- [6] F. Hiai, Representation of additive functionals on vector-valued normed Köthe spaces, Kodai Math. J. 2 (1979), 300-313.
- [7] H. Hudzik, A. Kamińska and M. Mastyło, Monotonicity and rotundity properties in Banach lattices, Rocky Mountain J. Math. 30 (2000), 933-950.
- [8] H. Hudzik and P. Kolwicz, On property (ß) of Rolewicz in Köthe-Bochner sequence spaces, Studia Math. 162 (2004), 195-212.
- [9] H. Hudzik and T. Landes, Characteristic of convexity of Köthe function spaces, Math. Ann. 294 (1992), 117-124.
- [10] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749.
- [11] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, 1990.
- [12] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Nauka, Moscow, 1977 (in Russian).
- [13] P. Kolwicz, On property (ß) in Banach lattices, Galderón-Lozanovskiĭ and Orlicz Lorentz spaces, Proc. Indian Acad. Sci. (Math. Sci.) 111 (2001), 319-336.
- [14] —, Uniform Kadec Klee property and nearly uniform convexity in Köthe-Bochner sequence spaces, Boll. Un. Mat. Ital. B (8) 6 (2003), 221-235.
- [15] —, Orthogonal uniform convexity in Köthe spaces and Orlicz spaces, Bull. Polish Acad. Sci. Math. 50 (2002), 395-411.
- [16] D. Krassowska and R. Płuciennik, A note on property (H) in Köthe-Bochner sequence spaces, Math. Japonica 46 (1997), 407-412.
- [17] D. N. Kutzarova, A nearly uniformly convex space witch is not a (β) space, Acta Univ. Carolin. Math. Phys. 30 (1989), 95-98.
- [18] —, On condition (ß) and Δ-uniform convexity, C. R. Acad. Bulgar. Sci. 42 (1989), 15-18.
- [19] —, k-(ß) and k-nearly uniformly convex Banach spaces, J. Math. Anal. Appl. 162 (1991), 322-338.
- [20] D. N. Kutzarova, E. Maluta and S. Prus, Property (β) implies normal structure of the dual space, Rend. Circ. Mat. Palermo 41 (1992), 335-368.
- [21] D. Kutzarova and T. Landes, Nearly uniform convexity of infinite direct sums, Indiana Univ. Math. J. 41 (1992), 915-926.
- [22] I. E. Leonard, Banach sequence spaces, J. Math. Anal. Appl. 54 (1976), 245-265.
- [23] P. K. Lin, Köthe Bochner Function Spaces, Birkhäuser, Boston, 2004.
- [24] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, 1979.
- [25] V. Montesinos and J. R. Torregrosa, A uniform geometric property of Banach spaces, Rocky Mountain J. Math. 22 (1992), 683-690.
- [26] S. Rolewicz, On Δ-uniform convexity and drop property, Studia Math. 87 (1987), 181-191.
- [27] M. A. Smith and B. Turett, Rotundity in Lebesgue Bochner function spaces, Trans. Amer. Math. Soc. 257 (1980), 105-118.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0005-0096