Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
We introduce the concept of an extreme relation for a topological flow as an analogue of the extreme measurable partition for a measure-preserving transformation considered by Rokhlin and Sinai, and we show that every topological flow has such a relation for any invariant measure. From this result, it follows, among other things, that any deterministic flow has zero topological entropy and any flow which is a K-system with respect to an invariant measure with full support is a topological K-flow.
Wydawca
Rocznik
Tom
Strony
17--24
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
autor
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury, Żołnierska 14A, 10-561 Olsztyn, Poland
autor
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Bibliografia
- [1] F. Blanchard, A disjointness theorem involving topological entropy, Bull. Soc. Math. France 121 (1993), 465–478.
- [2] F. Blanchard, B. Host, A. Maass, S. Martinez and D. J. Rudolph, Entropy pairs for a measure, Ergodic Theory Dynam. Systems 15 (1995), 621–632.
- [3] F. Blanchard, B. Host and S. Ruette, Asymptotic pairs in positive-entropy systems, ibid. 22 (2002), 671–686.
- [4] F. Blanchard and Y. Lacroix, Zero entropy factors of topological flows, Proc. Amer. Math. Soc. 119 (1993), 985–992.
- [5] I. P. Cornfeld, S. V. Fomin and Y. G. Sinai, Ergodic Theory, Springer, Berlin, 1982.
- [6] E. Glasner, A simple characterization of the set of μ-entropy pairs and applications, Israel J. Math. 102 (1997), 13–27.
- [7] E. Glasner and B. Weiss, On the interplay between measurable and topological dynamics, in: Handbook of Dynamical Systems, Vol. 1B, B. Hasselblatt and A. Katok (eds.), Elsevier, Amsterdam, 2005, to appear.
- [8] B. Kamiński, On regular generators of Z2-actions in exhaustive partitions, Studia Math. 85 (1987), 17–26.
- [9] B. Kamiński, A. Siemaszko and J. Szymański, The determinism and the Kolmogorov property in topological dynamics, Bull. Polish Acad. Sci. Math. 51 (2003), 401–417.
- [10] M. Lemańczyk and A. Siemaszko, A note on the existence of a largest topological factor with zero entropy, Proc. Amer. Math. Soc. 129 (2001), 475–482.
- [11] W. Parry, Entropy and Generators in Ergodic Theory, W. A. Benjamin, New York, 1969.
- [12] V. A. Rokhlin, On fundamental ideas of measure theory, Mat. Sb. 25 (1949), 107–150 (in Russian).
- [13] —, Lectures on the entropy theory of transformations with invariant measure, Uspekhi Mat. Nauk 22 (1967), no. 5, 3–56 (Russian).
- [14] V. A. Rokhlin and Ya. G. Sinai, Construction and properties of invariant measurable partitions, Dokl. Akad. Nauk SSSR 141 (1961), 1038–1041 (in Russian).
- [15] P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0005-0092