Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we study the spatial behaviour for an extended class of isotropic and homogeneous porous materials for which the constitutive coefficients are supposed to satisfy some relaxed positive denniteness conditions. By using some appropriate measures, we are able to establish results describing the spatial behaviour of transient and steady-state solutions in these enlarged classes of porous materials.
Czasopismo
Rocznik
Tom
Strony
43--65
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Department of Information Engineering and Applied Mathematics (DIIMA), University of Salerno, 84084 Fisciano (Sa), Italy
autor
- Faculty of Mathematics, University of Iaşi, 6600–Iaşi, Romania
autor
- Department of Information Engineering and Applied Mathematics (DIIMA), University of Salerno, 84084 Fisciano (Sa), Italy
Bibliografia
- 1. M. A. Goodman and S. C. Cowin, A continuum theory for granular materials, Arch. Rational Mech. Anal., 44, 249–266, 1972.
- 2. J. W. Nunziato and S. C. Cowin, A non–linear theory of elastic materials with voids, Arch. Rational Mech. Anal., 72, 175–201, 1979.
- 3. S. C. Cowin and J. W. Nunziato, Linear elastic materials with voids, J. Elasticity, 13, 125–147, 1983.
- 4. L. J. Gibson and M. F. Ashby, Cellular solids: structure and properties, 2nd Edition. Cambridge University Press, 2004.
- 5. W. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin 1994.
- 6. A. Galka, J. J. Telega and S. Tokarzewski, Application of homogenization to evaluation of effective moduli of linear elastic trabecular bone with plate – like structure, Arch. Mechanics, 51, 335–355, 1999.
- 7. D. Cioranescu and J. Saint–Jean Paulin, Homogenization of reticulated structures, (Applied Mathematical Sciences), Springer–Verlag, Berlin 1999.
- 8. S. Chiriµă, Some growth and decay estimates for a cylinder made of an elastic material with voids, Rev. Roum. Math. Pures et Appl., 39, 17–26, 1994.
- 9. S. Chiriµă, On some exponential decay estimates for porous elastic cylinders, Arch. Mechanics, 56, 199–212, 2004.
- 10. D. Iesan and R. Quintanilla, Decay estimates and energy bounds for porous elastic cylinders, Z. Angew. Math. Phys. (ZAMP), 46, 268–281, 1995.
- 11. A. Scalia, Spatial and temporal behaviour in elastic materials with voids, Acta Mechanica, 151, 44–50, 2001.
- 12. R. Lakes, Foam structures with a negative Poisson’s ratio, Science, 235, 1038–1040, 1987.
- 13. B. D. Caddock and K. E. Evans, Microporous materials with negative Poisson’s ratios: I. Microstructure and mechanical properties; II. Mechanisms and interpretation, Journal of Physics D: Applied Physics, 22, 1877–1882, 1883–1887, 1989.
- 14. T. Lee and R. S. Lakes, Anisotropic polyurethane foam with Poisson’s ratio greater than 1, Journal of Materials Science, 32, 2397–2401, 1997.
- 15. Y. C. Wang and R. S. Lakes, Analytical parametric analysis of the contact problem of human buttocks and negative Poisson’s ratio foam cushions, International Journal of Solids and Structures, 39, 4825–4838, 2002.
- 16. R. S. Lakes, Saint Venant end effects for materials with negative Poisson’s ratios, Journal of Applied Mechanics, 59, 744–746, 1992.
- 17. S. Chiriµă and M. Ciarletta, Time–weighted surface power function method for the study of spatial behaviour in dynamics of continua, Eur. J. Mech. A/Solids, 18, 915–933, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0005-0025