PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deformation due to inclined load in thermoelastic half-space with voids

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The two-dimensional deformation of homogeneous, isotropic, thermoelastic half-space with voids as a result of inclined line load is investigated by applying the Laplace and Fourier transforms. The inclined load is assumed to be a linear combination of a normal load and a tangential load. The displacements, stresses, temperature distribution and change in volume fraction field so obtained in the physical domain are computed numerically. The variations of these quantities have been depicted graphically in the Lord-Shulman (L-S) theory and Green-Lindsay (G-L) theory for an insulated boundary.
Rocznik
Strony
7--24
Opis fizyczny
Bibliogr. 30 poz., wykr.
Twórcy
autor
  • Mathematics Department, Kurukshetra University, Kurukshetra 136119 Haryana, India
autor
  • Doon Valley Institute of Engineering and Technology, Outside Jundla Gate, Karnal
Bibliografia
  • 1. A.E.H. Love, A treatise on the mathematical theory of elasticity, Dover Publications, New York 1944.
  • 2. T.Maruyama, On two-dimensional elastic dislocations in an infinite and semi- infinite medium, Bull. Earthq. Res. Inst., 44, 811–871, 1966.
  • 3. H.W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15, 299–309, 1967.
  • 4. J. T. Kuo, Static response of a multilayered medium under inclined surface loads, Journal of Geophysical Research, 74, 3195–3207, 1969.
  • 5. A.E. Green and K.A. Lindsay, Thermoelasticity, J. Elasticity, 2, 1–7, 1972.
  • 6. F.P. Gerstle and G.W. Pearsall, The stress response of an elastic surface to a high velocity, unlubricated punch, ASME Jounal of Applied Mechanics, 41, 1036–1040, 1974.
  • 7. J.W. Nunziato and S.C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., 72, 175–201, 1979.
  • 8. R.S. Dhaliwal and A. Singh, Dynamic coupled thermoelasticity, p. 726, Hindustan Publ. Corp., New Delhi 1980.
  • 9. S.C. Cowin and J.W. Nunziato, Linear elastic materials with voids, J. Elasticity 13, 125–147, 1983.
  • 10. G. Honig and U. Hirdes, A method for the numerical inversion of Laplace transform, Journal of Computational and Applied Mathematics, 10, 113–132, 1984.
  • 11. P. Puri and S.C. Cowin, Plane waves in linear elastic materials with voids, J. Elasticity, 15, 167–183, 1985.
  • 12. Y. Okada, Surface deformation due to inclined shear and tensile faults in a homogeneous isotropic half-space, Bull. Seismol. Soc. Am., 75, 1135–1154, 1985.
  • 13. W.H. Press, S.A. Teukolshy, W.T. Vellerling and B.P. Flannery, Numerical Recipes in FORTRAN (2nd edn.), Cambridge University Press, Cambridge 1986.
  • 14. G. Rusu, On existence and uniqueness in thermoelasticity of materials with voids, Bull. Polish Acad. Sci. Tech. Sci., 35, 339–346, 1987.
  • 15. G. Saccomandi, Some remarks about the thermoelastic theory of materials with voids, Rend. Mat. Appl., 12, 7, 45–58, 1992.
  • 16. Y. Okada, Internal deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 82, 1018–1040, 1992.
  • 17. M. Ciarletta and A. Scalia, On the nonlinear theory of nonsimple thermoelastic materials with voids, Z. Angew. Math. Mech., 73, 67–75, 1993.
  • 18. R.S. Dhaliwal and J. Wang, Domain of influenced theorem in the theory of elastic materials with voids, Int. J. Engng. Sci., 32, 1823–1828, 1994.
  • 19. E. Scarpetta, Well posedness theorems for linear elastic materials with voids, Int. J. Engng. Sci., 33, 151–161, 1995.
  • 20. R.S. Dhaliwal, and J. Wang, A heat-flux dependent theory of thermoelasticity with voids, Acta Mech., 110, 33–39, 1995.
  • 21. M. Ciarletta and E. Scarpetta, Some results on thermoelasticity for dielectric materials with voids, Z. Angew. Math. Mech., 75, 707–714, 1995.
  • 22. M. Marin, An uniqueness result for body with voids in linear Thermoelasticity, Rend. Mat. Appl., 17, 7, 103–113, 1997.
  • 23. M. Marin, On the domain of influence in thermoelasticity of bodies with voids, Arch. Math., 33, 301–308, Brno 1997.
  • 24. M. Marin, Contributions on uniqueness in thermoelastodynamics for bodies with voids, Cienc. Mat., Havana 16, 101–109, Havana 1998.
  • 25. M. Marin and H. Salca, A relation of Knopoff-de Hoop type in thermoelasticity of dipolar bodies with void, Theoret. Appl. Mech., 24, 99–110, 1998.
  • 26. M. Birsan, Existence and uniqueness of weak solution in the linear theory of elastic shells with voids, Libertas Math., 20, 95–105, 2000.
  • 27. R. Kumar, A. Miglani and N.R. Garg, Plane strain problem of poroelasticity using eigenvalue approach, Proceeding Indian Acad. Sci., (Earth Planet Sci.) 109, 371–380, 2000.
  • 28. S. Chirita and A. Scalia, On the spatial and temporal behavior in linear thermoelasticity of materials with voids, J. Thermal Stresses, 24, 433–455, 2001.
  • 29. A. Pompei and A. Scalia, On the asymptotic spatial behavior in linear thermoelasticity of materials with voids, J. Thermal Stresses, 25, 183–193, 2002.
  • 30. R. Kumar, A. Miglani and N.R. Garg, Response of an anisotropic liquid-saturated porous medium due to two-dimensional sources, Proceeding Indian Acad. Sci., (Earth Planet Sci.) 111, 143–151, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0005-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.