Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let X be a nonempty set of cardinality at most 2^[aleph]0 and T be a selfmap of X. Our main theorem says that if each periodic point of T is a fixed point under T, and T has a fixed point, then there exist a metric d on X and a lower semicontinuous map [phi] : X --> R+ such that d(x,Tx] is less than or equal phi[x] - phi(Tx) for all x belongs to X, and (X, d) is separable. Assuming CH (the Continuum Hypothesis), we deduce that (X,d) is compact.
Wydawca
Rocznik
Tom
Strony
411--416
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
- Institute of Mathematics Technical University of Łódź 90-924 Łódź, Poland and Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-956 Warszawa, Poland, szymon_glab@yahoo.com
Bibliografia
- [1] C. Bessaga, On the converse of the Banach fixed point principle, Colloq. Math. 7 (1959), 41-43.
- [2] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251.
- [3] J. Dugundji and A. Granas, Fixed Point Theory I, Polish Sci. Publ.,Warszawa, 1982.
- [4] J. Jachymski, Converses to fixed point theorems of Zermelo and Caristi, Nonlinear Anal. 52 (2003), 1455-1463.
- [5] L. Janoš, An application of combinatorial techniques to a topological problem, Bull. Austral. Math. Soc. 9 (1973), 439-443.
- [6] -, Compactification and linearization of abstract dynamical systems, Acta Univ. Carolin. Math. Phys. 38 (1997), 63-70.
- [7] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0005-0007