Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Several results on stability in impulsive dynamical systems are proved. The first main result gives equivalent conditions for stability of a compact set. In particular, a generalization of Ura's theorem to the case of impulsive systems is shown. The second main theorem says that under some additional assumptions every component of a stable set is stable. Also, several examples indicating possible complicated phenomena in impulsive systems are presented.
Wydawca
Rocznik
Tom
Strony
81--91
Opis fizyczny
Bibliogr. 10 poz., rys.
Twórcy
autor
- Mathematics Institute Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
Bibliografia
- [BH] N. P. Bhatia and O. Hajek, Local Semi-Dynamical Systems, Lecture Notes In Math. 90, Springer, 1970.
- [BS] N. P. Bhatia and G. P. Szegő, Stability Theory of Dynamical Systems, Springer, 2002.
- [C1] K. Ciesielski, Sections in semidynamical systems, Bull. Polish Acad. Sci. Math. 40 (1992), 297-307.
- [C2] -, On semicontinuity in impulsive dynamical systems, this volume, 71-80.
- [K1] S. Kaul, On impulsive semidynamical systems, J. Math. Anal. Appl. 150 (1990), 120-128.
- [K2] -, On impulsive semidynamical systems II, Recursive properties, Nonlinear Anal. 16 (1991), 635-645.
- [LBS] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Sci., 1989.
- [NS] V. V. Nemytskiĭ and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press, 1960.
- [P] A. Pelczar, Introduction to the Theory of Differential Equations, Part II , Bibl. Mat. 67, Polish Sci. Publ., 1989 (in Polish).
- [V] J. de Vries, Elements of Topological Dynamics, Math. Appl. 257, Kluwer, 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0004-0010