PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On semicontinuity in impulsive dynamical systems

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the important paper on impulsive systems [Kl] several notions are introduced and several properties of these systems are shown. In particular, the function [phi] which describes "the time of reaching impulse points" is considered; this function has many important applications. In [Kl] the continuity of this function is investigated. However, contrary to the theorem stated there, the function [phi] need not be continuous under the assumptions given in the theorem. Suitable examples are shown in this paper. We characterize the function [phi] from the point of view of its semicontinuity. Also, we show the analogous properties for impulsive systems given by semidynamical systems. In the last section we investigate the continuity properties of the escape time function in impulsive systems.
Rocznik
Strony
71--80
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
Bibliografia
  • [BH] N. P. Bhatia and O. Hajek, Local Semi-Dynamical Systems, Lecture Notes In Math. 90, Springer, 1970.
  • [BS] N. P. Bhatia and G. P. Szegő, Stability Theory of Dynamical Systems, Springer, 2002.
  • [C1] K. Ciesielski, Sections in semidynamical systems, Bull. Polish Acad. Sci. Math. 40 (1992), 297-307.
  • [C2] -, On isomorphisms of impulsive dynamical systems, to be published.
  • [K1] S. Kaul, On impulsive semidynamical systems, J. Math. Anal. Appl. 150 (1990), 120-128.
  • [K2] -, On impulsive semidynamical systems II, Recursive properties, Nonlinear Anal. 16 (1991), 635-645.
  • [LBS] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Sci., 1989.
  • [NS] V. V. Nemytskiĭ and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press, 1960.
  • [P1] A. Pelczar, General Dynamical Systems, Jagiellonian Univ. Lecture Notes 293, 1978 (in Polish).
  • [P2] -, Introduction to the Theory of Differential Equations; Part II (in Polish), Bibl. Mat. 67, PWN-Polish Sci. Publ., 1989.
  • [V] J. de Vries, Elements of Topological Dynamics, Math. Appl. 257, Kluwer, 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0004-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.