Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In [4, 5, 7] an abstract, versatile approach was given to sequential weak compactness and lower closure results for scalarly integrable functions and multifunctions. Its main tool is an abstract version of the Komlos theorem, which applies to scalarly integrable functions. Here it is shown that this same approach also applies to Pettis integrable multifunctions, because the abstract Komlos theorem can easily be extended so as to apply to generalized Pettis integrable functions. Some results in the literature are thus unified.
Wydawca
Rocznik
Tom
Strony
53--61
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Mathematical Institute, University of Utrecht, Budapestlaan 6, P.O. Box 80.010, 3508 TA Utrecht, The Netherlands
autor
- Department of Mathematics and Informatics, University of Perugia, Via L. Vanvitelli 1, 06100 Perugia, Italy
Bibliografia
- [1] A. Amrani, Lemme de Fatou pour l'intégrale de Pettis, Publ. Mat. 42 (1998), 67-79.
- [2] A. Amrani and C. Castaing, Weak compactness in Pettis integration, Bull. Polish Acad. Sci. Math. 45 (1997), 139-150.
- [3] E. J. Balder, Fatou's lemma in infinite dimensions, J. Math. Anal. Appl. 136 (1988), 450-465.
- [4] -, Unusual applications of a.e. convergence, in: Almost Everywhere Convergence, G. A. Edgar and L. Sucheston (eds.), Academic Press, New York, 1989, 31-53.
- [5] -, New sequential compactness results for spaces of scalarly integrable functions, J. Math. Anal. Appl. 151 (1990), 1-16.
- [6] E. J. Balder and C. Hess, Fatou's lemma for multifunctions with unbounded values, Math. Oper. Res. 20 (1995), 175-188.
- [7] -, -, Two generalizations of Komlós' theorem with lower closure-type applications, J. Convex Anal. 3 (1996), 25-44.
- [8] C. Castaing, Weak compactness and convergences in Bochner and Pettis integration, Vietnam J. Math. 24 (1996), 1-40.
- [9] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin, 1977.
- [10] C. Dellacherie et P.-A. Meyer, Probabilités et Potentiel, Hermann, Paris, 1975.
- [11] K. El Amri and C. Hess, On the Pettis integral of closed valued multifunctions, Set-Valued Anal. 8 (2000), 329-360.
- [12] B. Fuchssteiner and W. Lusky, Convex Cones, North-Holland, Amsterdam 1981.
- [13] C. Hess, On multivalued martingales whose values may be unbounded: martingale selectors and Mosco convergence, J. Multivariate Anal. 39 (1991), 175-201.
- [14] -, Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math. Anal. Appl. 153 (1990), 226-249.
- [15] C. Hess and H. Ziat, Théorème de Komlós pour des multifonctions intégrables Au sens de Pettis et applications, Ann. Sci. Math. Québec, to appear.
- [16] V. Klee and C. Olech, Characterizations of a class of sets, Math. Scand. 20 (1967), 290-296.
- [17] J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967), 217-229.
- [18] K. Musiał, Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 159-165.
- [19] -, Topics in the theory of Pettis integration, Rend. Ist. Mat. Univ. Trieste 23 (1991), 177-262.
- [20] N. C. Yannelis, Fatou's lemma in infinite dimensional spaces, Proc. Amer. Math. Soc. 102 (1988), 303-310.
- [21] H. Ziat, Convergence theorems for Pettis integrable multifunctions, Bull. Polish Acad. Sci. Math. 45 (1997), 123-137.
- [22] -, On a characterization of Pettis integrable multifunctions, ibid. 48 (2000), 228-230.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0004-0006