PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the method of dry convection in the atmosphere modeling on the dynamic properties of the model

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the problem of modeling dry convection in the atmosphere based on scaling of the movement equations resulting from the assumption that convection streams are mainly generated by the Archimedes draught force. This approach leads to description of the atmosphere movement different than in the Boussinesq approximation. The simplest case of Galerkin type equations in 3D phase space was considered. The obtained equations have different dynamics than the equations of the classical Lorenz model of dry convection. Lorenz model dynamics is controlled by the configuration of 2 non-dimensional numbers, while the dynamics of the proposed model is controlled by 3 numbers. It is presented in the language of symbolic dynamics, illustrated with numerous examples - indicating its different character than in the classical Lorenz model, among others: different values of Rayleigh number for which the systems loose structural stability.
Rocznik
Strony
215--233
Opis fizyczny
Bibliogr. 8 poz., wykr.
Twórcy
autor
  • Warsaw University - ICM, 5a Pawińskiego St., 02-106 Warsaw, Poland
  • PBP AVIOMET Ltd, 25/7 Miła St., 01-033 Warsaw, Poland
autor
  • Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
  • 1. R. BROJEWSKI, Predictability of some spectral and differential models of physics of atmosphere and their structural stability, J. Tech. Phys., 40, 4, 485-504, 1999.
  • 2. R. BROJEWSKI, Structural equivalence and stability of some atmospheric airflow models, J. Tech. Phys., 42, 3, 305-325, 2001.
  • 3. R.A. BROWN, Analitical methods in planetary boundary-layer modelling, Adam Hilger, London 1974.
  • 4. V. KRISHNAMURTHY, A predictability study of Lorenz's 28-variable model as a dynamical system, J. Atmos. Sci., 50, 14, 2215-2229, 1993.
  • 5. E.N. LORENZ, Deterministic nonperiodic flow, J. Atmos. Sci., 20,130-141,1963.
  • 6. H. MUKOUGAWA, ʺPeriodic sequence" embedded in aperiodic motions in the Lorenz system, J. Meteor. Soc. Japan, 72, 747-763, 1994.
  • 7. Cz. RYMARZ, Mechanics of Continua [in Polish], PWN, 1993.
  • 8. D.M. SONECHKIN, Stochasticity in atmospheric general circulation models [in Russian], Gidromet., 1984.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0002-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.