PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Integrals of Lipschitz-Hankel type in analysis of magnetostatic fields

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A boundary-integral model of the static magnetic field due to cylindrical permanent magnets that is put in free space is considered. Magnetic scalar potential quantities created by a virtual quantity "surface magnetic charge density" is expressed by means of Lipschitz-Hankel integrals that for the considered case are reducible (by the way of hypergeometric series) to some algebraic expressions, in which elliptic integrals of various kinds occur. This approach seems to be more effective than that can be reached by the use of a typical professional software for the field problems in which numerical integration, being not quite conform to the considered case, is common. The magnet subjected to the analysis has to be virtually subdivided in some number of elementary pieces, inside of which the uniform distribution of the inherent magnetization is supposed.
Rocznik
Strony
133--144
Opis fizyczny
Bibliogr. 11 poz., rys., wykr.
Twórcy
autor
  • Electrotechnical Institute Department of Fundamental Research in Electrotechnics Pożaryskiego 28, 04-793 Warszawa, Poland
Bibliografia
  • 1. K. PAWLUK, 3-D magnetic field of coils with an open metallic core in boundary-integral approach; Boundary Element Technology VIII, H. Pina and C.A. Brebbia [Eds.], Comp. Mech. Pub., Southampton, Boston 1993.
  • 2. K. PAWLUK, M. KUCHARSKA, Vector and scalar models of a quasi-stationary electromagnetic field in boundary-integral approach, Bull, of the Pol. Ac. of Sc., 44, 2, 119-128, 1996.
  • 3. M. KUCHARSKA, K. PAWLUK, On the bi-scalar boundary-integral approach to modelling electromagnetic fields, COMPEL, The Int. Jour, for Comp, and Math, in Electr. Eng., 17, 4, 475-488, 1998.
  • 4. K. PAWLUK, Z. ŻYCKI, Boundary-integral approach to determine the magnetic field created by a permanent magnet put in free space, COMPEL, The Int. Jour, for Com. and Math, in Electrical and Electronic Eng., 19, 1, 86-94, 2000.
  • 5. K. PAWLUK, Z. ZYCKI, The working state of cone-shaped permanent magnets determined by boundary-integral approach, COMPEL, P. Di Barba, A. Savini, S. Wiak [Eds.], The Int. Jour, for Com. and Math, in Electrical and Electronic Eng. 19, 2, 632-638, 2000.
  • 6. D. CRAIK, Magnetism, principles and applications, J. Wiley & Sons, Chichester, New York, Toronto, Brisbane, Singapore.
  • 7. G. EASON, B. NOBLE, I.N. SNEDDON, On certain integrals of Lipschnitz-Hankel type involving products of Bessel functions, Phil. Trans, of the Roy. Soc., 247, 195-219, 1954.
  • 8. W. PRESS, B. FLANNERY, S. TEUKOLSKY, The art of scientific computing, Cambridge Univ. Press, Cambridge 1968.
  • 9. K. PAWLUK, Algorithms based on integrals of Lipschitz-Hankel type for modelling permanent magnet field, Bulletin of the Polish Academy of Sciences, Technical Sciences, 49, 4, 567-580.
  • 10. I.M. RYSHIK, I.S. GRADSTEIN, Tables of series, products and integrals, VEB Deutscher Verlag der Wissenschaften, Berlin 1957.
  • 11. P.F. BYRD, M.D. FRIEDMAN, Handbook of elliptic integrals for engineers and scientists, Springer- Verlag Berlin, Heidelberg, New York 1971.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0002-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.