Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The torques of a magnetic brake and a solid rotor induction machine, fed by sinusoidal voltage sources, are simulated by a motional finite element method. Oscillatory solutions occurring for motional models with elevated velocities, are prevented by adaptive mesh refinement relying upon intermediate solutions stabilised by upwinded finite element test functions. A relaxed successive approximation deals with the non-linear material properties. The connections of the conductors and windings within the finite element model to external loads, impedances and supplies are represented by an electric circuit and added to the system of equations. The technical examples indicate the advantages of the motional formulation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
389--397
Opis fizyczny
Bibliogr.15 poz., rys., wykr.
Twórcy
autor
- Technische Universität Darmstadt, Computational Electromagnetics Laboratory, Schloßgartenstraße 8, D-64289 Darmstadt, Germany
autor
- Katholieke Universiteit Leuven, Dep. ESAT, Div. ELECTA, Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
Bibliografia
- 1. A. Sommerfeld, Electrodynamics, Academic Press, New York 1952.
- 2. T.W. Nehl, B. Lequesne, V. Gangla, S.A. Gutkowski, M.J. Robinson, T. Sebastian, Nonlinear two-dimensional finite element modeling of permanent magnet eddy current coupling and brakes, IEEE Transactions on Magnetics, 30, 5, 3000-3003, September 1994.
- 3. Y.K. Shin, W. Lord, Numerical modeling of moving probe effects for electromagnetic nondestructive evaluation, IEEE Transactions on Magnetics, 29, 2, 1865-1868, March 1993.
- 4. H. De Gersem, R. Mertens, K. Hameyer, Comparison of time-harmonic and transient finite element models for asynchronous machines, In Proceedings of the International Conference on Electrical Machines ICEM00, 1, 66-70, Helsinki 2000.
- 5. D. Rodger, P.J. Leonard, J.F. Eastham, Modelling electromagnetic rail launchers at speed using 3D finite elements, IEEE Transactions on Magnetics, 27, 1, 314-317, January 1991.
- 6. E.R. Laithwaite, Induction machines for special purposes, Newnes, London 1966.
- 7. Y. Saad, Iterative methods for sparse linear systems. PWS Publishing Company, Boston 1996.
- 8. K.W. Morton, Numerical solution of convection-diffusion problems, Chapman and Hall, London 1996.
- 9. H. Vande Sande, H. De Gersem, K. Hameyer, Finite element stabilization techniques for convection-diffusion problems, International Journal of Theoretical Electrotechnics, pp.56-59, March 1999.
- 10. H. De Gersem, R. Mertens, U. Pahner, R. Belmans, K. Hameyer, A topological method used for field-circuit coupling, IEEE Transactions on Magnetics, 34, 5, 3190-3193, September 1998.
- 11. D. Lederer, A. Kost, Modelling of nonlinear magnetic material using a complex effective reluctivity, IEEE Transactions on Magnetics, 34, 53060-3063, September 1998.
- 12. D. Lederer, H. Igarashi, A. Kost, The Newton-Raphson method for complex equation systems, [In:] Proceedings of the 7th international IGTE symposium on numerical field calculation in electrical engineering (IGTE98), pp.391-394, Graz, Austria, September 1996.
- 13. K. Hameyer, R. Mertens, U. Pahner, R. Belmans, New technique to enhance the accuracy of 2-d/3-d field quantities and forces obtained by standard finite-element solutions, IEE Proceedings Science, Measurement and Technology, 145, 2, 67-75, March 1998.
- 14. Testing electromagnetic analysis methods (TEAM), http://ics.ec-lyon.fr/team.html
- 15. K. Davey, Analytic analysis of single- and three-phase induction motors, IEEE Transactions on Magnetics, 34, 5, 3721-3727, September 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0002-0007