PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Support overlapping Markov semigroups

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New sufficient conditions for asymptotic stability of Markov semigroups are given. These criteria are applied to transport equations.
Rocznik
Strony
419--438
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Institute of Mathematics, Polish Academy of Sciences, Bankowa 14, 40-007 Katowice, Poland, mtyran@us.edu.pl
Bibliografia
  • [1] K. Baron, A. Lasota, Asymptotic properties of Markov operators defined by Volterra type integrals, Ann. Polon. Math., 58 (1993) 161-175.
  • [2] W. Bartoszek, T. Brown, On Frobenius-Perron operators which overlaps supports, Bull. Pol. Ac.: Math., 45 (1997) 17-24.
  • [3] T. Dłotko, A. Lasota, Statistical stability and the lower bound function technique, in: Semigroups theory and applications, Vol. 1, eds.: H. Bereziz, M. Crandall, Longman Scientific and Technical, London (1987) 75-95.
  • [4] S. Horowitz, Semi-groups of Markov operators, Ann. Inst. H. Poincaré, 10 (1974) 155-166.
  • [5] J. Klaczak, Stability of a transport equation, Ann. Polon. Math., 49 (1988) 69-80.
  • [6] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math., 6, Berlin 1985.
  • [7] A. Lasota, Invariant principle for discrete time dynamical systems, Univ. Iagel. Acta. Math., 31 (1994) 111-127.
  • [8] A. Lasota, M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Springer Appl. Math. Sci., 97, New York 1994.
  • [9] A. Lasota, J. Traple, Invariant measures related with Poisson driven stochastic differential equations, Stochastic Process. Appl., 106 (2003) 81-93.
  • [10] M. Lin, Support overlapping L1 contractions and exact non-singular transformations, Colloq. Math., 84/85 (2000) 515-520.
  • [11] S. Łojasiewicz, An introduction to the theory of real functions, John Wiley and Sons, New York 1988.
  • [12] J. Malczak, Weak and strong convergence of L1 solutions of a transport equation, Bull. Pol. Ac.: Math., 40 (1992) 59-72.
  • [13] J. Malczak, Statistical stability of Poisson driven differential equations, Bull. Pol. Ac.: Math., 41 (1993) 159-176.
  • [14] K. Pichór, Asymptotic stability of a partial differential equation with an integral perturbation, Ann. Polon. Math., 68 (1998) 83-96.
  • [15] K. Pichór, R. Rudnicki, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl., 215 (1997) 56-74.
  • [16] K. Pichór, R. Rudnicki, Asymptotic behaviour of Markov semigroups and applications to transport equations, Bull. Pol. Ac.: Math., 45 (1997) 379-397.
  • [17] K. Pichór, R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000) 668-685.
  • [18] R. Rudnicki, Asymptotic behaviour of a transport equation, Ann. Polon. Math., 57 (1992) 45-55.
  • [19] R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Pol. Ac.: Math., 43 (1995) 245-262.
  • [20] R. Rudnicki, Asymptotic stability of Markov operators: a counter-example, Bull. Pol. Ac.: Math., 45 (1997) 1-5.
  • [21] R. Rudnicki, K. Pichór, M. Tyran-Kamińska, Markov semigroups and their applications, in: Dynamics of Dissipation, eds.: P. Garbaczewski, R. Olkiewicz, Lectures Notes in Phys., 597, Springer-Verlag, Berlin (2002) 215-238.
  • [22] J. Socała, On the existence of invariant densities for Markov operators, Ann. Polon. Math., 48 (1988) 51-56.
  • [23] J. Traple, Markov semigroups generated by Poisson driven differential equations, Bull. Pol. Ac.: Math., 44 (1996) 161-182.
  • [24] R. Zaharopol, Strongly asymptotically stable Frobenius-Perron operators, Proc. Am. Math. Soc., 128 (2000) 3547-3552.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0001-0080
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.