PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The determinism and the Kolmogorov property in topological dynamics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are introduced the concepts of deterministic, exact and Kolmogorov flows which are topological analogues of the well known measure-theoretic dynamical systems with the same names. It is shown that all distal flows are deterministic and that the only deterministic subshifts are those with a finite phase space. Deterministic flows have zero entropy. The class of Kolmogorov flows contains flows acting on zero-dimensional phase spaces being measure-theoretic Kolmogorov systems with respect to measures with full supports. All minimal Kolmogorov flows are weakly mixing.
Rocznik
Strony
401--417
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
autor
  • Faculty of Mathematics and Computer Science, University of Warmia and Mazury, Żołnierska 14A, 10-631 Olsztyn, Poland
  • Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Bibliografia
  • [1] J. Auslander, Minimal flows and their extensions, Elseviers Science Publishers B.V., 1988.
  • [2] F. Blanchard, Fully positive topological entropy and topological mixing, Contemp. Math., 135 (1992) 95-105.
  • [3] F. Blanchard, B. Host, S. Ruette, Asymptotic pairs in positive-entropy systems, Ergodic. Theory Dynam. Systems, 22 (2002) 671-686.
  • [4] M. Denker, C. Grillenberger, K. Sigmund, Ergodic theory on compact spaces, Lecture Notes in Math., 527, Springer-Verlag, Berlin Heidelberg New York 1976.
  • [5] M. Denker, M. Urbański, Ergodic theory of equilibrium states for rational maps, Nonlinearity, 4 (1991) 103-134.
  • [6] R. Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York 1969.
  • [7] H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math., 83 (1961) 573-601.
  • [8] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, Math. Syst. Th., 1 (1967) 1-49.
  • [9] W. Geller, M. Misiurewicz, Rotation and entropy, Trans. Amer. Math. Soc., 251 (1999) 2927-2948.
  • [10] S. Glasner, D. Maon, Rigidity in topological dynamics, Ergodic Theory Dynam. Systems, 9 (1989) 309-320.
  • [11] K. Krzyżewski, On exact toral endomorphisms, Monatsh. Math., 116 (1993) 39-47.
  • [12] R. Mañé, Expansive homeomorphisms and topological dimension, Trans. Amer. Math. Soc., 252 (1979) 313-319.
  • [13] W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc., 122 (1966) 168-178.
  • [14] V. A. Rokhlin, On the fundamental ideas of measure theory (Russian), Mat. Sb., 25 (1949) 107-150.
  • [15] V. A. Rokhlin, Exact endomorphisms of a Lebesgue space (Russian), Izv. Akad. Nauk, 22 (1967) 499-530.
  • [16] V. A. Rokhlin, Lectures on the entropy theory of transformations with invariant measure (Russian), Uspekhi Mat. Nauk, 22 (5) (1967) 3-56.
  • [17] V. A. Rokhlin, Y. G. Sinai, Construction and properties of invariant measurable partitions (Russian), Dokl. Akad. Nauk SSSR, 141 (1961) 1038-1041.
  • [18] A. Siemaszko, J. Szymański, On exact topological flows, Topol. Methods Nonlinear Anal., 21 (2003) 387-392.
  • [19] P. Walters, An introduction to Ergodic Theory, Springer-Verlag, New York, Heidelberg, Berlin 1982.
  • [20] B. Weiss, Multiple recurrence and doubly minimal systems, Contemp. Math., 215 (1998) 189-196.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0001-0079
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.