Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove that any infinite-dimensional hereditarily indecomposable compactum can be represented as the limit of an inverse sequence of compacta X0 <-- X1 <-- X2 <--..., where each Xk, k > O, is hereditarily indecomposable, dim Xk = k, and the bonding maps pk k+1 : X k+1 --> Xk are 1-dimensional monotone and surjective. Moreover, each bonding map pk k+l : Xk,l > 1, is l-dimensional. For finite dimensional hereditarily indecomposable compacta there exist analogous finite inverse sequences. Much the same results hold also for hereditarily unicoherent compacta.
Wydawca
Rocznik
Tom
Strony
31--41
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland, jokra@impan.gov.pl
Bibliografia
- [1] P. S. Aleksandroff, Dimensionstheorie, Math. Ann., 106 (1932) 161-238.
- [2] W. Hurewicz, H. Wallman, Dimension theory, Princeton University Press, London 1948.
- [3] J. Krasinkiewicz, Essential mappings onto products of manifolds, in: Geometric and algebraic topology, Banach Center Publications, 18, PWN, Warszawa (1986) 377-406.
- [4] K. K. Kuratowski, Topology, vol. II, PWN, Warszawa; Academic Press, New York and London 1968.
- [5] L. G. Oversteegen, E. D. Tymchatyn, On hereditarily indecomposable compacta, in: Geometric and algebraic topology, Banach Center Publications, 18, PWN, Warszawa (1986) 407-417.
- [6] R. Pol, A 2-dimensional compactum in the product of two 1-dimensional compacta which does not contain any rectangle, Topology Proc., 16 (1991) 133-135.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0001-0044