PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Assessment of implementation variants of conditional scalar dissipation rate in LES-CMC simulation of auto-ignition of hydrogen jet

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the large eddy simulation (LES) and conditional moment closure (CMC) combustion model have been applied for modelling of auto-ignition of hydrogen jet issuing into a hot ambient co-flow. Most of the attention was devoted to modelling aspects of the conditional scalar dissipation rate which is a key quantity of the CMC model. Two models are compared with emphasis on differences in distributions in mixture fraction space. Analysis of mutual relations between the terms of CMC equations confirms importance of the conditional scalar dissipation rate. It is also shown that model constants are crucial from the point of view of an auto-ignition location and a flame lift off height. The numerical results are compared with experimental data and both the mean and the root mean square fluctuating values of the temperature and species mass fraction agree well with measurements.
Rocznik
Strony
97--129
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
  • Institute of Thermal Machinery Faculty of Mechanical Engineering and Computer Science Częstochowa University of Technology Al. Armii Krajowej 21 42-200 Częstochowa, Poland, atyl@imc.pcz.czest.pl
Bibliografia
  • 1. R. Knikker, A. Dauptain, B. Cuenot, T. Poinsot, Comparison of computational methodologies for ignition of diffusion layers, Combustion Science and Technology, 175, 1783–1806, 2003.
  • 2. B. Han, C.J. Sung and M. Nishioka, Effects of vitiated air on hydrogen ignitron inviscid a high-speed laminar mixing layer, Combustion Science and Technology, 176, 305–330, 2004.
  • 3. R. Cabra, T. Myrvold, J.Y. Chen, R.W. Dibble, A.N. Karpetis, R.S. Barlow, Simultaneous laser Raman-Rayleigh-LIF measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated co-flow, Proceedings of the Combustion Institute, 29, 1881–1888, 2002.
  • 4. R. Markides, E. Mastorakos, An experimental study of hydrogen auto-ignition in a turbulent co-flow of heated air, Proceedings of the Combustion Institute, 30, 883–891, 2005.
  • 5. S. Navarro-Martinez, A. Kronenburg, Flame stabilization mechanism in liftem flames, Flow, Turbulence and Combustion, 87, 377–406, 2011.
  • 6. H.G. Im, L.L. Raja, R.J. Kee, L.R. Petzold, A numerical study of transient ignition in a counterflow nonpremixed methane-air flame using adaptive time integration, Combustion Science and Technology, 158, 341–363, 2000.
  • 7. S.D. Mason, J.H. Chen, H.G. Im, Effects of unsteady scalar dissipation rate on ignitron of non-premixed hydrogen/air mixtures in counterflow, Proceedings of the Combustion Institute, 29, 1629–1636, 2002.
  • 8. E. Mastorakos, Ignition of turbulent non-premixed flames, Progress in Energy and Combustion Science, 35, 57–97, 2009.
  • 9. Y.A. Klimenko, R.W. Bilger, Conditional Moment Closure for turbulent combustion, Progress in Energy and Combustion Science, 25, 595–687, 1999.
  • 10. N. Peters, Turbulent Combustion, Cambridge University Press, 2000.
  • 11. T. Poinsot, D. Veynante, Theoretical and Nnumerical Combustion, Edwards, 2001.
  • 12. C.D. Pierce, P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, Journal of Fluid Mechanics, 504, 73–97, 2004.
  • 13. L. Valiño, A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow, Flow, Turbulence and Combustion, 60, 157–172, 1998.
  • 14. W.P. Jones, A. Tyliszczak, Large Eddy Simulation of spark ignition in a gas turbine combustor, Flow, Turbulence and Combustion, 85, 711–734, 2010.
  • 15. W.P. Jones, V.N. Prasad, Large Eddy Simulation of the Sandia Flame Series (D, E and F) using the Eulerian stochastic field method, Combustion and Flame, 157, 1621–1636, 2010.
  • 16. W.P. Jones, V.N. Prasad, LES-pdf simulation of a spark ignited turbulent methane jet, Proceedings of the Combustion Institute, 33, 1355–1363, 2011.
  • 17. S. Navarro-Martinez, A. Kronenburg, LES-CMC simulations of a lifted methane flame, Proceedings of the Combustion Institute, 32, 1, 1509–1516, 2009.
  • 18. A. Garmory, E. Mastorakos, Capturing localised extinction in Sandia flame F with LES-CMC, Proceedings of the Combustion Institute, 33, 1673–1680, 2011.
  • 19. S. Ayache, E. Mastorakos, Conditional Moment Closure/Large Eddy Simulation of the Delft-III Natural Gas Non-premixed Jet Flame, Flow, Turbulence and Combustion, 88, 207–231, 2011.
  • 20. I. Stankovic, A. Triantafyllidis, E. Mastorakos, C. Lacor, B. Merci, Simulation of hydrogen auto-ignition in a turbulent co-flow of heated air with LES and CMC approach, Flow, Turbulence and Combustion, 86, 689–710, 2011.
  • 21. A. Triantafyllidis, E. Mastorakos and R.L.G.M. Eggels, Large Eddy Simulations of forced ignition of a non-premixed bluff-body methane flame with Conditional Moment Closure, Combustion and Flame, 156, 2328–2345, 2009.
  • 22. P. Schroll, E. Mastorakos, R.W. Bilger, Simulations of spark ignition of a Stirling n-heptane spray flame with conditional moment closure, AIAA Paper, 2010-614, 1–12, 2010.
  • 23. A. Tyliszczak, E. Mastorakos, LES/CMC predictions of spark ignition probability in a liquid fuelled swirl combustor, AIAA Paper 2013-0427, 2013.
  • 24. B.J. Geurts, Elements of Direct and Large-Eddy Simulation, Edwards Publishing, 2003.
  • 25. P. Sagaut, Large eddy simulation for incompressible flows, Springer, 2001.
  • 26. A.W. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications, Physics of Fluids, 16, 3670–3681, 2004.
  • 27. M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgrid scale Eddy viscosity model, Physics of Fluids A, 3, 1760–1765, 1991.
  • 28. F. Nicoud, F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow, Turbulence and Combustion, 62, 183–200, 1999.
  • 29. A. Triantafyllidis, E. Mastorakos, Implementation issues of the Conditional Moment Closure in Large Eddy Simulations, Flow, Turbulence and Combustion, 84, 481–512, 2009.
  • 30. S. Navarro-Martinez, A. Kronenburg, F. di Mare, Conditional moment closure for large eddy simulations, Flow, Turbulence and Combustion, 75, 245–274, 2005.
  • 31. P.J. Colucci, F.A. Jaberi, P. Givi, S.B. Pope, Filtered density function for large eddy simulation of turbulent reacting flows, Physics of Fluids, 10, 499–515, 1998.
  • 32. A.W. Cook, J.J. Riley, A subgrid model for equilibrium chemistry in turbulent flows, Physics of Fluids, 6, 2868–2870, 1994.
  • 33. C. D. Pierce, P. Moin, A dynamic model for sub-grid variance and dissipation rate of a conserved scalar, Physics of Fluids, 10, 12, 3041–3044, 1998.
  • 34. N. Branley, W.P. Jones, Large Eddy Simulation of a turbulent non-premixed flame, Combustion and Flame, 127, 1914–1934, 2001.
  • 35. I.S. Kim, Conditional moment closure for non-premixed turbulent combustion, PhD thesis, Cambridge University, 2004.
  • 36. I.S. Kim, E. Mastorakos, Simulation of turbulent lifted jet flames with two-dimensional conditional moment closure, Proceedings of the Combustion Institute, 30, 911–918, 2005.
  • 37. I.S. Kim, E. Mastorakos, Simulations of turbulent non-premixed counterflow flam es with first order conditional moment closure, Flow, Turbulence and Combustion, 76, 133–162, 2006.
  • 38. C. Jiménez, F. Ducros, B. Cuenot, B. Bédat, Subgrid scale variance and dissipation of a scalar field in Large Eddy Simulations, Physics of Fluids, 13, 1748–1754, 2001.
  • 39. A. Majda, J. Sethian, The derivation of the numerical solution of the equations for zero Mach number Combustion, Combustion Science & Technology, 42, 185–205, 1985.
  • 40. W.C. Cook, J.J. Riley, Direct numerical simulation of a turbulent reactive plume on a parallel computer, Journal of Computational Physics, 129, 263–283, 1996.
  • 41. S.K. Lele, Compact finite difference with spectral-like resolution, Journal of Computational Physics, 103, 16–42, 1992.
  • 42. C.W. Shu, High-order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerk in Methods for CFD, Journal of Computational Physics, 17, 2, 107–118, 2003.
  • 43. L. Kuban, J-P. Laval, W. Elsner, A. Tyliszczak, M. Marquillie, LES modeling of converging-diverging turbulent channel flow, Journal of Turbulence, 13, 1–19, 2012.
  • 44. W. Aniszewski, A. Boguslawski, M. Marek, A. Tyliszczak, A new approach to sub-grid surface tension for LES of two-phase flows, Journal of Computational Physics, 231, 7368–7397, 2012.
  • 45. A. Tyliszczak, A. Boguslawski, S. Drobniak, Quality of LES predictions of isothermal and hot round jet, Quality and Reliability of Large Eddy Simulations, ERCOFTAC Series, 12, 259–270, 2008.
  • 46. L. Kuban, A. Tyliszczak, A. Boguslawski, LES modelling of methane ignition using Eulerian stochastic fields approach, [in:] Proceedings 8th International Symposium on Engineering Turbulence Modelling and Measurements, vol. 2, 492–497, 2010.
  • 47. P.N. Brown, A.C. Hindmarsh, Reduced storage matrix methods in stiff ODE systems, Journal of Applied Mathematical Computations, 31, 40–91, 1989.
  • 48. J.H. Ferziger, M. Peric, Computational methods for fluid dynamics, Springer, Berlin, 1996.
  • 49. http://www.reactiondesign.com/products/open/chemkin.html.
  • 50. M.A. Mueller, T.J. Kim, R.A. Yetter, F.L. Dryer, Flow reactor studies and kinetic modelling of the H2/O2 reaction, International Journal of Chemical Kinetics, 31, 113–125, 1999.
  • 51. Ch. Hirsh, Numerical computation of internal and external flows, Wiley, Chichester, 1990.
  • 52. B. van Leer, Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme, Journal of Computational Physics, 14, 361–370, 1974.
  • 53. W.P. Jones, S. Navarro-Martinez, O. Röhl, Large eddy simulation of hydrogen auto-ignition with a probability density function method, Proceedings of the Combustion Institute, 31, 1765–1771, 2007.
  • 54. W.P. Jones, S. Navarro-Martinez, Large eddy simulation of auto-ignition with a subgrid probability density function, Combustion and Flame, 150, 170–187, 2007.
  • 55. S.S. Patwardhan, Santanu De, K.N. Lakshmisha, B.N. Raghunandan, CMC simulations of lifted turbulent jet flame in a vitiated coflow, Proceedings of the Combustion Institute, 32, 1705–1712, 2009.
  • 56. M. Klein, A. Sadiki, J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical and large eddy simulations, Journal of Computational Physics, 186, 652–665, 2003.
  • 57. I. Orlanski, A simple boundary condition for unbounded hyperbolic flows, Journal of Computational Physics, 21, 251–269, 1975.
  • 58. A.R. Masri, R. Cao, S.B. Pope, G.M. Goldin, PDF calculations of turbulent liftem flames of H2/N2 fuel issuing into a vitiated co-flow, Combustion Theory Modelling, 8, 1–22, 2004
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0014-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.