PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-linear singular integral equations analysis for unsteady cascade aeroelasticity applied in turbomachines

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A two-dimensional unsteady cascade aeroelasticity is introduced for the investigation of flow fields of turbomachines (gas or steam). Especially, the velocity field around a cascade of airfoils is determined, while such a problem is reduced to the solution of a non-linear multidimensional singular integral equation when considering harmonic time dependence between the motions of adjacent blades of the turbine. Consequently, a general non-linear model is investigated by proposing an “innovative” and “groundbreaking” method. An application is finally presented by considering a special description of the velocity field and therefore such a field is determined for arbitrary geometry and arbitrary interblade phase angle.
Rocznik
Strony
45--53
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
Bibliografia
  • 1. S.M. Smith, Discrete Frequency Sound Generation in Axial Flow Turbomachines, Aeron. Res. Council, R & M 3709, London, 1972.
  • 2. M. Namba, Lifting Surface Theory for a Rotating Subsonic or Transonic Blade Row, Aeron. Res. Council, R & M 3740, London, 1972.
  • 3. P. Salaün, Pressions Aerodynamiques Instationnaires sur une Grille Annulaire en Ecconlement Subsonique, Publ. ONERA No. 158, 1974.
  • 4. M.E. Goldstein, Aeroacoustics, McGraw-Hill, New York, 1976.
  • 5. M.F. Platzer, Unsteady Flows in Turbomachines – A Review of Current Developments, AGARD-CP-227 Unsteady Aerodynamics, Ottawa, 1977.
  • 6. J.J. Adamczyk, M.E. Goldstein, Unsteady flow in a supersonic cascade with subsonic leading edge locus, AIAA J., 16, 1248—1254, 1978.
  • 7. S. Fleeter, Aeroelasticity research for turbomachine applications, J. Aircraft, 16, 320–326, 1979.
  • 8. K.R. Kaza, R.E. Kielb, Flutter and response of a mistuned cascade in incompressible flow, AIAA J., 20, 1120–1127, 1982.
  • 9. J.M. Verdon, J.R. Caspar, A linearized unsteady aerodynamic analysis for transonic cascades, J. Fluid Mech., 149, 403–429, 1984.
  • 10. P.R. Spalart, Two recent extensions of the vortex method, AIAA No. 84-0343, Reno, 1984.
  • 11. E.F. Crawley, K.C. Hall, Optimization and mechanism of mistuning in cascades, J. Engng. Gas Turbine Power, 107, 418–426, 1985.
  • 12. G.G. Speziale, F. Sisto, S. Jonnavithula, Vortex simulation of propagating stall in a linear cascade of airfoils, ASME J. Fluid Engng., 108, 304–312, 1986.
  • 13. M.F. Platzer, F.O. Carta (Eds), AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines, Vol. 1, Unsteady Aerodynamics, AGARDograph, No. 298, 1987.
  • 14. F. Sisto, W. Wu, S. Thangam, S. Jonnavithula, Computational aerodynamics of oscillating cascades with the evolution of stall, AIAA J., 27, 462–471, 1989.
  • 15. E.G. Ladopoulos, Finite-part singular integro-differential equations arising in two-dimensional aerodynamics, Arch. Mech., 41 , 925–936, 1989.
  • 16. E.G. Ladopoulos, Non-linear integro-differential equations used in orthotropic spherical shell analysis, Mech. Res. Commun., 18 , 111–119, 1991.
  • 17. E.G. Ladopoulos, Non-linear integro-differential equations in sandwich plates stress analysis, Mech. Res. Commun., 21 , 95–102, 1994.
  • 18. E.G. Ladopoulos, Non-linear singular integral representation for unsteady inviscid flow-fields of 2-D airfoils, Mech. Res. Commun., 22 , 25–34, 1995.
  • 19. E.G. Ladopoulos, Non-linear singular integral computational analysis for unsteady flow problems, Renew. Energy, 6, 901–906, 1995.
  • 20. E.G. Ladopoulos, V.A. Zisis, ‘Existence and uniqueness for non-linear singular integraf equations used in fluid mechanics, Appl. Math., 42 , 345–367, 1997
  • 21. E.G. Ladopoulos, V.A. Zisis, Non-linear finite-part singular integral equations arising in two-dimensional fluid mechanics, Nonlin. Anal., Th. Meth. Appl., 42, 277–290, 2000.
  • 22. E.G. Ladopoulos, Relativistic mechanics for airframes applied in aeronautical technologies, Adv. Bound. Elem. Tech., 10 , 395–405, 2009.
  • 23. E.G. Ladopoulos, Relativistic elasticity and the universal equation of elasticity for next generation aircrafts and spacecrafts, J. GJRE Aerosp. Scien., 12, 1–10, 2012.
  • 24. E.G. Ladopoulos, Next generation aircraft and spacecraft by fracture mechanics analysis and relativistic elasticity, Aviat. Focus, 3, 118–141, 2012.
  • 25. E.G. Ladopoulos, On the universal equation of elasticity and the universal equation of thermo-elasticity for next generation aircrafts and spacecrafts, J. Aerosp. Engng Tech., 2, 1–18, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0014-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.