PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal vibration analysis of carbon nanotubes embedded in two-parameter elastic foundation based on nonlocal Timoshenko's beam theory

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a new model to consider the thermal effects, Pasternak’s shear foundation, transverse shear deformation and rotary inertia on vibration analysis of a single-walled carbon nanotube. Nonlocal elasticity theory is implemented to investigate the small-size effect on thermal vibration response of an embedded carbon nanotube. Based on Hamilton’s principle, the governing equations are derived and then solved analytically, in order to determine the nonlocal natural frequencies. Results show that unlike the Pasternak foundation, the influence of Winkler’s constant on nonlocal frequency is negligible for low temperature changes. Moreover, the nonlocal frequencies are always smaller as compared to their local counterparts. In addition, in high shear modulus along with an increase in aspect ratio, the nonlocal frequency decreases.
Rocznik
Strony
581--581
Opis fizyczny
-–602, Bibliogr. 45 poz.
Twórcy
autor
autor
Bibliografia
  • 1. S. Iijima, Nature, London, 354, 1991, 56–58, 1991.
  • 2. T.W. Ebbessen, Carbon nanotubes preparation and properties, CRC Press, New York, 1997.
  • 3. E.V. Dirote, Trends in nanotechnology research, Nova Science Publishers, New York, 2004.
  • 4. S.C. Fang, W.J. Chang, Y.H. Wang, On the theory and design of acoustic resonators, Phys. Letters A, 371, 499–503, 2007.
  • 5. C.Y. Li, T.W. Chou, Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators, Physical Review B, 68, 2003.
  • 6. C.Y. Li, T.W. Chou, Mass detection using carbon nanotube-based nanomechanical resonators, Applied Physics Letters, 84, 25, 5246–5248, 2004.
  • 7. G. Yoon, C.Q. Ru, A. Mioduchowski, Vibration and instability of carbon nanotubes conveying fluid, Journal of Applied Mechanics, Transactions of the ASME, 65, 9, 1326–1336, 2005.
  • 8. F. Scarpa, S. Adhikari, Uncertainty modeling of carbon nanotube terahertz oscillators, Journal of Non-Crystalline Solids, 354, 35-39, 4151–4156, 2008.
  • 9. W. Yang, X.L. Ma, H.T. Wang, W. Hong, The advancement of nanomechanics (continued), The Advancement of Mechanics, 33, 2, 175–185, 2003.
  • 10. E.T. Thostenson, Z. Ren, T.W. Choua, Advances in the science and technology of carbon nanotubes and their composites, Composite Science Technology, 61, 13, 1899–1912, 2001.
  • 11. Y. Yan, W.Q. Wang, L.X. Zhang, Nonlocal effect on axially compressed buckling of triple-walled carbon nanotubes under temperature field, Journal of Applied Math and Modelling, 34, 3422–3429, 2010.
  • 12. T. Murmu, S.C. Pradhan, Thermo-mechanical vibration of Single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory, Computational Material Science, 46, 854–859, 2009.
  • 13. A. Pantano, D.M. Parks, M.C. Boyce, Mechanics of deformation of single- and multiwall carbon nanotubes, Journal of the Mechanics and Physics of Solids, 52, 4, 789–821, 2004.
  • 14. H.K. Yang, X. Wang, Bending stability of multi-wall carbon nanotubes embedded in an elastic medium, Modeling and Simulation in Materials Sciences and Engineering, 14, 99, 99–116, 2006.
  • 15. J. Yoon, C.Q. Ru, A. Mioduchowski, Vibration of an embedded multiwall carbon nanotube, Composites Science and Technology, 63, 11, 1533–1542, 2003.
  • 16. C.M. Wang, V.B.C. Tan, Y.Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, Journal of Sound and Vibration, 294, 4-5, 1060–1072, 2006.
  • 17. M. Mir, A. Hosseini, G.H. Majzoobi, A numerical study of vibrational properties of single-walled carbon nanotubes, Computational Materials Science, 43, 3, 540–548, 2008.
  • 18. M. Mitra, S. Gopalakrishnan, Wave propagation in multi-walled carbon nanotube, Computational Materials Science, 45, 2, 411–418, 2009.
  • 19. W.J. Chang, H.L. Lee, Free vibration of a single-walled carbon nanotube containing a fluid flow using the Timoshenko beam model, Physics Letter A, 373, 10, 982–985, 2009.
  • 20. X. Wang, G.X. Lu, Y.J. Lu, Buckling of embedded multi-walled carbon nanotubes under combined torsion and axial loading, International Journal of Solids and Structures, 44, 1, 336–351, 2007.
  • 21. Y.Y. Zhang, C.M. Wang, V.B.C. Tan, Buckling of multi-walled carbon nanotubes using Timoshenko beam theory, Journal of Engineering Mechanics, 132, 9, 952–958, 2006.
  • 22. H.S. Shen, C.L. Zhang, Post buckling of double-walled carbon nanotubes with temperature dependent properties and initial defects, International Journal of Solids and Structures, 74, 3, 1461–1487, 2007.
  • 23. P. Lu, H.P. Lee, C. Lu, P.Q. Zhang, Application of nonlocal beam models for carbon nanotubes, International Journal of Solids and Structures, 44, 16, 5289–5300, 2007.
  • 24. C.M. Wang, Y.Y. Zhang, X.Q. He, Vibration of nonlocal Timoshenko beams, Nanotechnology, 18, 10, 105401, 2007.
  • 25. Y. Zhang, G. Liu, X. Han, Transverse vibration of double-walled carbon nanotubes under compressive axial load, Applied Physics Letter A, 340, 1-4, 258–266, 2005.
  • 26. J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beam, International Journal of Engineering and Science, 45, 2-8, 288-307, 2007.
  • 27. A. Ghorbanpour Arani, M.S. Zarei, M. Mohammadimehr, A. Arefmanesh, M.R. Mozdianfard, The thermal effect on buckling analysis of a DWCNT embedded on the Pasternak foundation, Physica E, 43, 1642–1648, 2011.
  • 28. S. Govindjee, J.L. Sackman, On the use of continuum mechanics to estimate the properties of nanotubes, Solid State Communications, 110, 4, 227–230, 1999.
  • 29. A.C. Eringen, Nonlocal continuum field theories, Springer, New York 2002.
  • 30. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of skrew dislocation and surface waves, Journal of Applied Physics, 54, 9, 4703–4710, 1983.
  • 31. A.C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves, International Journal of Engineering Science, 10, 5, 425–435, 1972.
  • 32. A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity, International Journal of Engineering Science, 10, 3, 233–248, 1972.
  • 33. J.N. Reddy, Energy Principles and Variational Methods in Applied Mechanics, Wiley, New York, 2002.
  • 34. J.N. Reddy, S.D. Pang, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, International Journal of Engineering Science, 103, 2, 1–16, 2008.
  • 35. H.S. Shen, J. Yang, S. Kitipornchai, Postbuckling of internal pressure loaded FGM cylindrical shells surrounded by an elastic medium, European Journal of Mechanics A/Solids, 29, 3, 448–460, 2010.
  • 36. J.Y. Hsieh, J.M. Lu, M.Y. Huang, C.C. Hwang, Theoretical variations in the Young’s modulus of single-walled carbon nanotubes with tube radius and temperature: a molecular dynamics study, Nanotechnology, 17, 15, 3920–3924, 2006.
  • 37. F. Scarpa, L. Bordin, H.X. Peng, C.D.L. Remillat, S. Adhikari, Coupled thermomechanics of single-wall carbon nanotubes, Applied Physics Letters, 97, 15190-3, 2010.
  • 38. H. Jiang, R. Liu, Y. Huang, K.C. Hwang, Thermal expansion of single wall carbon nanotube, Journal of Engineering of Material and Technology, 126, 3, 265–270, 2004.
  • 39. A. Tounsi, H. Heireche, et al., Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field, Journal of Applied Physics, 104, 104301, 2008.
  • 40. R. Ansari, H. Ramezannezhad, Nonlocal Timoshenko beam model for the largest- amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects, Physica E, 43, 1171–1178, 2011.
  • 41. T. Murmu, S.C. Pradhan, Thermal effects on the stability of embedded carbon nanotubes, Computational Material Science, 47, 721–726, 2010.
  • 42. A. Benzair, A. Tounsi, The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory, Journal of Physics D: Applied Physics, 41, 225404, 2008.
  • 43. C.W. Lim, Q. Yang, Nonlocal thermal elasticity for nanobeam deformation: exact solution with stiffness enhancement effects, Journal of Applied Physics, 110, 013514, 2011.
  • 44. X.H. Yao, Q. Han, Buckling analysis of multiwalled carbon nanotubes under torsional load coupling with temperature change, Journal of Engineering of Material and Technology, 128, 3, 419–428, 2006.
  • 45. Y.Q. Zhang, X. Liu, J.H. Zhao, Influence of temperature change on column buc kling of multiwalled carbon nanotubes, Applied Physics Letters A, 372, 10, 1671–1681, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0013-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.