Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present investigation deals with the study of Green’s functions in orthotropic piezothermoelastic diffusion media. With this objective, firstly the two-dimensional general solution in orthotropic piezothermoelastic diffusion media is derived. On the basis of general solution, the Green function for a point heat source and chemical potential source in the interior of semi-infinite orthotropic piezothermoelastic diffusion material is constructed by five newly introduced harmonic functions. The components of displacement, stress, electric displacement, electric potential, temperature change and chemical potential are expressed in terms of elementary functions. Since all the components are expressed in terms of elementary functions, this fact makes them convenient to use. From the present investigation, a special case of interest is also analyzed to depict the effect of diffusion. Resulting quantities are computed numerically and presented graphically to illustrate the effect of diffusion.
Czasopismo
Rocznik
Tom
Strony
555--555
Opis fizyczny
-–579, Bibliogr. 32 poz.
Twórcy
autor
autor
- Department of Mathematics Kurukshetra University Kurukshetra-136119, Haryana, India, rajneesh_kukmath@rediffmail.com
Bibliografia
- 1. W. Thompson, Sir (Lord Kelvin), Note on the integration of the equations of equilibrium of an elastic solid, Mathematical and Physical Systems, Cambridge University Press, London, 1882.
- 2. I. Freedholm, Sur les equations de l’equilbre d’um crops solide elastique, Acta Mathematica, 23, 1–42, 1900.
- 3. J.L. Synge, The Hypercircle in Mathematical Physics, Cambridge University Press, London, UK, 1957.
- 4. Y.C. Pan, T.W. Chou, Point forces solution for an infinite transversely isotropic solid, ASME Journal of Applied Mechanics, 43, 6080-612, 1976.
- 5. W.F. Deeg, The analysis of dislocation, crack and inclusion problem in piezoelectric solids, Ph.D. Dissertation, Stanford University, 1980.
- 6. B. Wang, Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material, Int. J. Solids Struct., 29, 293–308, 1992.
- 7. T.Y. Chen, F.Z. Lin, Numerical evalution of derivatives of the anisotropic piezoelectric Green’s functions, Mech. Res. Commun., 20, 501–506, 1993.
- 8. J.S. Lee, L.Z. Jiang, A boundary integral formulation and 2D fundamental solution for piezoelectric media, Mech. Res. Commun., 22, 47–54, 1994.
- 9. Z.K. Wang, B.L. Zheng, The general solution of three-dimensional problem in piezoelectric media, Int. J. Solids Struct., 31, 105–115,1995.
- 10. H.J. Ding, J. Liang, B. Chen, Fundamental solution for transversely isotropic piezoelectric media, Sci. China A, 39, 766–775, 1996.
- 11. H.J. Ding, G.Q. Wang, W.Q. Chen, Fundamental solution for the plane problem of piezoelectric materials, Sci. China E, 40, 331–336, 1997.
- 12. S.S. Rao, M. Sunar, Analysis of distributed thermopiezoelectric sensors and actuators in advanced intelligent structure, AIAA J., 31, 1280–1284, 1993.
- 13. W.Q. Chen, On the general solution for piezothermoelastic for transverse isotropy with application, ASME, J. Appl. Mech., 67, 705–711, 2000.
- 14. W.Q. Chen, C.W. Lim, H.J. Ding, Point temperature solution for a penny shaped crack in an infinite transverse isotropic thermopiezoelastic medium, Engng. Anal. with Bound. Elem., 29, 524–532, 2005.
- 15. P.F. Hou, W. Luo, Y.T. Leung, A point heat source on the surface of a semi-infinite transverse isotropic piezothermo elastic material, SME J. Appl. Mech., 75, 1–8, 2008.
- 16. W. Nowacki, Dynamical problem of thermodiffusion in solid, I, Bulletin of Polish Academy of Sciences Series, Science and Tech., 22, 55–64, 1974.
- 17. W. Nowacki, Dynamical problem of thermodiffusion in solid, II, Bulletin of Polish Academy of Sciences Series, Science and Tech., 22, 129–135, 1974.
- 18. W. Nowacki, Dynamical problem of thermodiffusion in solid, III, Bulletin of Polish Academy of Sciences Series, Science and Tech., 22, 275–276, 1974.
- 19. W. Nowacki, Dynamic problems of thermodiffusion in solids, Proc. Vib. Prob., 15, 105–128, 1974.
- 20. H.H. Sherief, H. Saleh, A half space problem in the theory of generalized thermoelastic diffusion, Int. J. of Solid and Struc., 42, 4484–4493, 2005.
- 21. R. Kumar, T. Kansal, Propagation of Lamb waves in transversely isotropic thermoelastic diffusive plate, Int. J. of Solid and Struct., 45, 5890–5913, 2008.
- 22. R. Kumar, V. Chawla, Surface wave propagation in an elastic layer lying over a thermodiffusive elastic half-space with imperfect boundary, Mechanics of Advanced Material and Structure, 18, 352–363, 2011.
- 23. Z.B. Kuang, Variational principles for generalized thermodiffusion theory in pyroelectricity, Acta Mechanica, 214, 275–289, 2010.
- 24. R. Kumar, V. Chawla, A study of fundamental solution in orthotropic thermodiffusive elastic media, Int. Commun. Heat and Mass Transf., 38, 456–462, 2011.
- 25. R. Kumar, V. Chawla, Green’s functions in orthotropic thermodiffusive elastic media, Engng Anal. with Bound. Elem., 36, 1272–1277 , 2012.
- 26. H.A. Elliott, Three-dimensional stress distributions in aeolotropic hexagonal crystals, Proc. Cambridge Philos. Soc., 44, 522–533, 1948.
- 27. H. Ding, J. Liang, The fundamental solution for transversely isotropic piezoelectricity and boundary element method, Computer and Structure, 71, 447–455, 1999.
- 28. X.Y. Li, W.Q. Chen, H.Y. Wang, General steady solution for transversely isotropic thermoporoelastic media in three-dimensions and its application, European Journal of Mechanics A/Solids, 29, 317–326, 2010.
- 29. X.Y. Li, W.Q. Chen, H.Y. Wang, Three-dimensional general solutions for thermoporoelastic media and its application, European Journal of Mechanics A/Solids,doi:10.1016/j.euromechsol.2009.11.007.
- 30. H.J. Ding, B. Chen, J. Liang, General solutions for coupled equations for piezoelectric media, Int. J. Solids. Struct., 16, 2283–2298, 1996.
- 31. S.M. Xiong, P.F. Hou, S.Y. Yang, 2-D Green’s Function for semi-infinite orthotropic piezothermoelastic plane, IEEE Transactions on Ultrasonics and Frequency control, 5, 1003–1010, 2010.
- 32. M.D. Sharma, propagation of inhomogeneous waves in anisotropic piezothermoelastic media, Acta Mechanica, 215, 307–318, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0013-0046