PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reaction-diffusion equation modelling calcium waves with fast buffering in visco-elastic environment

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The model we consider treats a cell or a group of cells as a viscoelastic medium whose stress tensor has a term - the traction- representing the stresses generated in the medium by the actomyosin molecules. We consider three kinds of domains (“shapes” of cells): the thin circular cylinder mimicking a long cell, the thin slab being a cari-cature of a tissue, and the unbounded space. We assume that the viscous effects are much weaker than the elastic ones and consider two extreme cases: either the body force is negligible or it is strong. This leads to three pairs, one pair for each domain, of approximations for the dilatation. We interpolate between the approximated ex-pressions forming one pair and as the result we obtain a single calcium conservation equation and a system of buffer equations. Using the rapid buffering approximation we reduce the problem to a single reaction-diffusion equation. We study the travelling wave solutions to these equations. We show that not only the high affinity buffers but also the mechanical effects alone can prevent the formation and propagation of the waves if the supply of calcium is not sufficiently substantial.
Rocznik
Strony
477--477
Opis fizyczny
–-509, Bibliogr. 25 poz.
Twórcy
autor
  • Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B 02-106 Warszawa, Poland, k.piechor@ippt.gov.pl
Bibliografia
  • 1. J.D. Murray, Mathematical Biology, 2nd ed. Springer, Berlin, 1993.
  • 2. J. Keener, J. Sneyd, Mathematical Physiology, Springer, New York, 1998.
  • 3. P. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes In Biomathematics, 28, Springer, New York, 1979.
  • 4. J. Wagner, J. Keizer Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations, Biophysical Journal, 67, 447–456, 1994.
  • 5. J. Sneyd, J. Keizer, M.J. Sanderson, Mechanisms of calcium oscillations and waves: a quantitative analysis, FASEB Journal, 9, 1463–1472, 1995.
  • 6. G.D. Smith, L.X. Dai, R.M. Miura, A. Sherman, Asymptotic analysis of buffered calcium diffusion near a point source, SIAM Journal of Applied Mathematics, 61, 1816–1838, 2001.
  • 7. J. Sneyd, P.D. Dale, A. Duffy, Traveling waves in buffered systems: applications to calcium waves, SIAM Journal of Applied Mathematics, 58 (4), 1178–1192, 1998.
  • 8. J.-C. Tsai, J. Sneyd, Are buffers boring? Uniqueness and asymptotical stability of traveling wave fronts in the buffered bistable system, Journal of Mathematical Biology, 54, 513–540, 2007.
  • 9. J.-C. Tsai, J. Sneyd, Existence and stability of travelling waves in buffered systems, SIAM Journal of Applied Mathematics, 66 (1), 237–265, 2005.
  • 10. J.-S. Guo, J.-C. Tsai, The asymptotic behavior of solutions of the buffered bistable system, Journal of Mathematical Biology, 53, 179–213, 2006.
  • 11. B. Kaźmierczak, V. Volpert, Travelling calcium waves in systems with non-diffusing buffers, Mathematical Models and Methods in Applied Sciences, 18 (6), 883–912, 2008.
  • 12. B. Kaźmierczak, V. Volpert, Calcium waves in systems with immobile buffers as a limit of waves for systems with nonzero diffusion, Nonlinearity, 21, 71–96, 2006.
  • 13. J.D. Murray, G.F. Oster, Generation of biological pattern and form, IMA Journal of Mathematics Applied in Medicine and Biology, 1, 51–75, 1984.
  • 14. D.C. Lane, J.D. Murray, V.S. Manoranjan, Analysis of wave phenomena in a morphogenic mechanochemical model and an application to post-fertilization waves in eggs, IMA Journal of Mathematics Applied in Medicine and Biology, 4, 309–331, 1987.
  • 15. G. Flores, A. Minzoni, K. Mischaikov, V. Moll, Post-fertilization travelling waves on eggs, Nonlinear Analysis: Theory, Methods and Applications, 36 (1), 45–62, 1999.
  • 16. G. Flores, R. Plaza, Stability of post-fertilization travelling waves, Journal of Differential Equations, 247, 1529–1590, 2009.
  • 17. Z. Peradzyński, B. Kaźmierczak, On mechano-chemical calcium waves, Archive of Applied Mechanics, 74, 827–833, 2005.
  • 18. Z. Peradzyński, Diffusion of calcium in biological tissues and accompanying mechano-chemical effects, Archives of Mechanics, 62 (6), 423–440, 2010.
  • 19. B. Kaźmierczak, M. Dyzma, Mechanical effects coupled with calcium waves, Archives of Mechanics, 62 (2), 121–133, 2010.
  • 20. B. Kaźmierczak, V. Volpert, Mechano-chemical calcium waves in systems with im-mobile buffers, Archives of Mechanics, 60 (1), 3–22, 2008.
  • 21. B. Kaźmierczak, Z. Peradzyński, Calcium waves with fast buffers and mechanical effects, Journal of Mathematical Biology, 62, 1–38, 2011.
  • 22. B.C. Goodwin, L.E.H. Trainor, Tip and whorl morphogenesis in Acetabularia by calcium-regulated strain fields, Journal of Theoretical Biology, 117, 79–106, 1985.
  • 23. C. Brière, Dynamics of the Goodwin-Tainor mechanochemical model, Acta Biotheoretica, 42, 137–146, 1994.
  • 24. C. Brière, B.C. Goodwin, Effects of calcium input/output on the stability of a system for calcium-regulated viscoelastic strain fields, Journal of Mathematical Biology, 28, 585–593, 1990.
  • 25. Z. Wang, M. Tymianski, O. T. Jones, M. Nedergaard, Impast of cytoplasmic calcium buffeting on the spatial and temporal characteristics of intercellular calcium signals in asreocytes, Journal of Neuroscience, 17 (19), 7359–7371, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0013-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.