PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of confined flows past obstacles – the comparative study of Lattice Boltzmann and Spectral Element Methods

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper concerns the Lattice Boltzmann Method (LBM) which has recently become alternative, computationally efficient tool to simulate a Newtonian fluid flow, especially in complex geometries. A series of benchmark two-dimensional simulations with the LBM are presented and analyzed in order to assess the impact of the LBM grid refinement on the results of the simulations. The considered cases include stationary and time-dependent flows past a circular or a 45-degree rotated square cylinder confined in the channel with parallel walls. Next, the same flow configurations are investigated by means of the Spectral Element Method (SEM) and obtained results are used to cross-validate both approaches. The sensitivity to the resolution of representation of the obstacle’s shape in the LBM simulations is of the main interest. Particular attention is paid also to the effects of compressibility of the flow. Additionally, for unsteady flows the transient flow characteristics are compared in detail: the velocity profiles from the LBM and SEM are presented and some non-dimensional characteristics such as Strouhal number of the compared von Karman vortex streets.
Rocznik
Strony
423--456
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
  • Faculty of Power and Aeronautical Engineering Institute of Aeronautics and Applied Mechanics Warsaw University of Technology Nowowiejska 24 00-665 Warszawa, Poland, wregulski@meil.pw.edu.pl
Bibliografia
  • 1. U. Frisch, B. Hasslacher, Y. Pomeau, Lattice gas automata for the Navier–Stokes equations, Phys. Rev. Lett., 56, 1505, 1986.
  • 2. S. Succi, P. Santangelo, R. Benzi, High resolution lattice gas simulation of twodimensional lattice gas turbulence, Phys. Rev. Letters, 60, 2738, 1988.
  • 3. S. Chen, H. Chen, D. Martinez, W. Matthaeus, Lattice Boltzmann model for simulation of magnetohydrodynamics, Phys. Rev. Lett. 67, 27, 3776, 1991.
  • 4. N.S. Martys, H. Chen, Simulation of multicomponent fluids in complex threedimensional geometries by the lattice Boltzmann method, Phys. Rev. E, 53, 743–750, 1996.
  • 5. N.S. Martys, F.F. Douglas, Critical properties and phase separation in lattice Boltzmann mixtures, Phys. Rev. E, 63, 1–18, 1991.
  • 6. D. d’Humières, A. Cloqueur, P. Lellamand, Lattice gas and parallel processors, Il Calcolo, 25, 129, 1987.
  • 7. J. F. Higuera, S. Succi, Simulating the flow around a circular cylinder with a lattice Boltzmann equation, Europhys. Lett., 8, 517, 1989.
  • 8. J. Bernsdorf, T. Zeiser, G. Brenner, F. Durst, Simulation of a 2D channel flow around a square obstacle with lattice-Boltzmann (BGK) automata, International Journal of Modern Physics C, 9, No. 8, 1129–1141, 1998.
  • 9. M. Breuer, J. Bernsdorf, T. Zeiser, F. Durst, Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume, International Journal of Heat and Fluid Flow, 21, 2, 186–196, 2000.
  • 10. P.P. Patil, S. Tiwari, Effect of blockage ratio on wake transition for flow past square cylinder, Fluid Dynamics Research, 40, 753–778, 2008.
  • 11. A. Sohankar, C. Norberg, L. Davidson, Numerical simulation of unsteady low-Reynolds number flow around rectangular cylinders at incidence, Journal of Wind Engineering and Industrial Aerodynamics, 189–201, 1997.
  • 12. A. Prządka, J. Szumbarski, Numerical analysis of the wake structure in the twodimensional wall-confined flow past a square cylinder, 19th Polish National Fluid Dynamics Conference, Poznań, September 5–9, 2010.
  • 13. U. Frisch, D. d’Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, J.P. Rivet, Lattice gas hydrodynamics in two and three dimensions, Complex Systems, 1, 649, 1987.
  • 14. P. Lallemand, L. Luo, Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 6546–6562, 2000.
  • 15. Q. Zou, X. He, On pressure and velocity flow boundary conditions and bounceback for the lattice Boltzmann BGK model, Phys. Fluids, 9, 1591–1598, 1997.
  • 16. P. Bhatnagar, E.P. Gross, M. Krook, A model for collisional processes in gases I: Small amplitude process in charged and neutral one-component system, Phys. Rev., 94, 511–525, 1954.
  • 17. D. d’Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand, L. Luo, Multiplerelaxation-time lattice Boltzmann models in three dimensions, Phil. Trans. Royal Society London A, 437–452, 2002.
  • 18. P.A. Skorodos, Initial and boundary conditions for the lattice Boltzmann method, Phys. Rev. E, 48, 4823, 1993.
  • 19. T. Inamuro, M. Yoshino, F. Ogino, A non-slip boundary condition for lattice Boltzmann simulations, Phys. Fluids, 7, 2928, 1996.
  • 20. R.S. Meier, R.S. Bernard, D.W. Grunau, Boundary conditions for the lattice Boltzmann method, Phys. Fluids, 8, 1788, 1996.
  • 21. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, 2001.
  • 22. http://www.palabos.org/.
  • 23. R. Mei, W. Shyy, L.-S. Luo, An accurate curved boundary treatment in the Lattice Boltzmann Method, Journal of Computational Physics, 155, 307–329, 1999.
  • 24. J. Bao, P. Yuan, L. Schaefer, A mass conserving boundary condition for the lattice Boltzmann equation method, Journal of Computational Physics, 227, 8472–8487, 2008.
  • 25. R.S. Maier, R.S. Bernard, Accuracy of the lattice-Boltzmann method, [in:] Proceedings of the Sixth International Conference on Discrete Models for Fluid Mechanics. Boston University, Boston, 26–28 August 1996. Int. Journal Modern Physics C, 8, 4, 747–752, 1997.
  • 26. J.G. Heywood, R. Ranacher, S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations, Int. J. Numerical Methods In Fluids, 22, 325–352, 1996.
  • 27. L. Formaggia, J.F. Gerbeau, F. Nobile, A. Quarteroni, Numerical treatment of defective boundary conditions for the Navier–Stokes equations, SIAM Journal of Numerical Analysis, 40, no. 1, 373–401, 2002.
  • 28. M.O. Deville, P.F. Fisher, E.H. Mund, High-Order Methods for Incompressible Fluid Flow, Cambridge University Press, 2002.
  • 29. G.M. Karniadakis, S. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, Oxford Science Publications, 2005.
  • 30. C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Evolution to Complex Geometries and Application to Fluid Dynamics, Springer, 2007.
  • 31. Y. Maday, A.T. Patera, E.M. Ronquist, An operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow, J. Sci. Comput., 5, 263–292, 1990.
  • 32. W. Couzy, M.O. Deville, Spectral-element preconditioners for the Uzawa pressure operator applied to incompressible flows, J. Scientific Computing, 9, 2, 107–122, 1994.
  • 33. P.F. Fisher, Projection techniques for iterative solution of Ax = b with successive righthand sides, Comput. Methods. Appl. Mech. Eng., 163, 193–204, 1998.
  • 34. J. Szumbarski, P. Olszewski, A. Styczek, J. Rokicki, Computations of an unsteady flow in a three dimensional system of ducts. Part 1: Formulation of the mathematical problem and numerical method, Journal of Theoretical and Applied Mechanics, 42, 1, 21–39, 2004.
  • 35. J. Szumbarski, P. Olszewski, K. Wawruch, Z. Małota, Computations of an unsteady flow in a three dimensional system of ducts. Part 2: Implementation issues and sample results, Journal of Theoretical and Applied Mechanics, 42, 4, 869–903, 2004.
  • 36. M. Junk, Z. Yang, Pressure boundary condition for the lattice Boltzmann method, Computers and Mathematics with Applications, 58, 922–929, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0012-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.