PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of generalized differential quadrature method to nonlinear bending analysis of a single SWCNT over a bundle of nanotubes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The deformation of an individual single walled carbon nanotube (SWCNT) over a bundle of nanotubes has been studied using the generalized differential quadrature (GDQ) method. The effects of length, diameter, and minimum value of Lennard–Jones experimental potential have been considered in the governing equation which is derived based on the GDQ and the issues related to the implementation of the boundary and compatibility conditions were addressed. The explanation of reliability and flexibility of the GDQ is done by solving several selected examples which are evaluated by comparing them with existing exact or approximate solutions which were previously generated by finite element approach.
Słowa kluczowe
Rocznik
Strony
347--366
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
autor
Bibliografia
  • 1. S. Iijima, Helical microtubules of graphitic carbon, Nature (London), 354, 56–58, 1991.
  • 2. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1 nm diameter, Nature (London), 356, 776–778, 1993.
  • 3. D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez,R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature (London), 363, 605–607, 1993.
  • 4. G. Overney, W. Zhong, D. Tománek, Structural rigidity and low frequency vibrational modes of long carbon tubules, Phys. D, 27, 93–96, 1993.
  • 5. S.P.M. Shaffer and J.K.W. Sandler, Carbon Nanotube/Nanofibre Polymer Composites, Chapter 1, [in:] Processing and Properties of Nanocomposites, World Scientific Publishing Co. Pte. Ltd. http: //www.worldscibooks.com/nanosci/6317.html.
  • 6. Li Xu, Cong Yue, J. Liu, Y. Zhang, X. Z. Lu, Z. Cheng, Nano-thermal interface material with CNT nano-particles for heat dissipation application, International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), p. 4, 2008.
  • 7. X. Guo, T. Zhang, A study on the bending stiffness of single-walled carbon nanotubes and related issues, Journal of the Mechanics and Physics of Solids, 58, 428–443, 2010.
  • 8. E. Saether, S.J.V. Frankland, R.B. Pipes, Transverse mechanical properties of single-walled carbon nanotube crystals, Part I: Determination of elastic moduli, Compos. Sci. Technol., 63, 1543–1550, 2003.
  • 9. J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stockli, N.A. Burnham, L. Forro, Elastic and shear moduli of single-walled carbon nanotube ropes, Phys. Rev. Lett., 82, 944–947, 1999.
  • 10. A. Fereidoon, N. Kordani, A. Ghorbanzadeh Ahangari, M. Ashoory, Damping augmentation of epoxy using carbon nanotubes Int. J. Polym. Mater., 60, 11–26, 2011.
  • 11. A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy, Young’s modulus of single-walled nanotubes, Phys. Rev. B., 58, 14013–14019, 1998. Application of GDQ method to nonlinear bending analysis. . . 365
  • 12. E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, 277, 1971–1975, 1997.
  • 13. J.P. Salvetat, A.J. Kulik, J.M. Bonard, G.A.D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N.A. Burnham, L. Forro, Elastic modulus of ordered and disordered multiwalled carbon nanotubes, Adv. Mater., 11, 161–165, 1999.
  • 14. D.H. Robertson, D.W. Brenner, J.W. Mintmire, Energetics of nanoscale graphitic tubules, Phys. Rev. B., 45, 12592–12595, 1992.
  • 15. T.Y. Wu, G.R. Liu, The differential quadrature as a numerical method to solve the differential equation, Comput. Mech., 24, 197–205, 1999.
  • 16. T.Y.Wu, G.R. Liu, A generalized differential quadrature rule for initial-value differential equations, J. Sound Vib., 233, 195–213, 2000.
  • 17. G.R. Liu, T.Y. Wu, Numerical solution for differential equations of Duffng-type nonlinearity using the generalized differential quadrature rule, J. Sound Vib., 237, 805–817, 2000.
  • 18. Z. Spitalskya, D. Tasisb, K. Papagelisb, C. Galiotis, Carbon nanotube–polimer composites: Chemistry, processing, mechanical and electrical properties, Progress in Polymer Science, 35, 357–401, 2010.
  • 19. V.N. Popov, Carbon nanotubes: properties and application, Materials Science and Engineering R., 43, 61–102, 2004.
  • 20. M. Sammalkorpi, A.V. Krasheninnikov, A. Kuronen, K. Nordlund, B.K. Kaski, Irradiation-induced stiffening of carbon nanotube bundles, Nuclear Instruments and Methods in Physics Research B., 228, 142–145, 2005.
  • 21. K.N. Kudin, G.E. Scuseria, B.I. Yakobson, C2F, BN, and C nanoshell elasticity from ab initio computations, Physical Review B, 64. 235406-10, 2010.
  • 22. D. Qian, W.K. Liu, R.S. Ruoff, Load transfer mechanism in carbon nanotube ropes, Composites Sci. Techn., 63, 1561–1569, 2003.
  • 23. R.F. Gibson, E.O. Ayorinde, Y.F. Wen, Vibrations of carbon nanotubes and their composites: A review, Composites Science and Technology, 67, 1–28, 2007.
  • 24. Z. Li, P. Dharap, S. Nagarajaiah, R.P. Nordgren, B. Yakobson, Nonlinear analysis of a SWCNT over a bundle of nanotubes, International Journal of Solids and Structures, 41, 6925–6936, 2004.
  • 25. J.N. Israelachvili, Intermolecular and Surface Forces, 2nd ed., Academic Press, Harcourt Brace & Company Publishers, 1991.
  • 26. D.W. Coffin, L.A. Carlsson, R.B. Pipes, On the separation of carbon nanotubes, Composites Science and Technology, 66, 1132–1140, 2006.
  • 27. M. Hetenyi, Beams on Elastic Foundation, Ann Arbor the University of Michigan Press, London 1946.
  • 28. A.P. Boresi, R.J. Schmidt, Advanced Mechanics of Materials, 6th ed., Wiley, 1954.
  • 29. R. Bellman, B.G. Kashef, J. Casti, A technique for the rapid solution of nonlinear partial differential equations, Comput. Phys., 10, 40–52, 1972.
  • 30. F. Civan, C.M. Sliepcevich, Application of differential quadrature to solution of pool boiling in cavities, Comput. Phys., 56, 343–348, 1984.
  • 31. C.W. Bert, S.K. Jang, A.G. Striz, Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature, AIAA. J., 26, 612–618, 1988.
  • 32. S.K. Jang, C.W. Bert, A.G. Striz, Application of differential quadrature to static analysis of structural components, Int. J. Num. Methods Eng., 28, 561–577, 1989.
  • 33. A.N. Sherbourne, M.D. Pandey, Differential quadrature method in the buckling analysis of beams and composite plates, Comput. Struct., 40, 903–913, 1990.
  • 34. R.H. Mohammad, J.A. Mohammad, P. Malekzadeh, A differential quadrature analysis of unsteady open channel flow, Appl. Math. Modelling, 31, 1594–1608, 2007.
  • 35. S.C. Pradhan, T. Murmu, Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundation using differential quadrature method Sound. Vib., 321, 342–362, 2009.
  • 36. A. Fereidoon, M. Sghardokht Seyedmahalle, A. Mohyeddin, Bending analysis of thin functionally graded plates using generalized differential quadrature method, Archive of Applied Mechanics, DOI 10.1007/s00419-010-0499-3, to appear.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0012-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.