Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A classical mechanical system subjected to frictional forces is considered in the limit of large frictional coefficient. Random white noise is also introduced in conformity to the fluctuation-dissipation theorem. The velocity is split into a deterministic component plus a random stochastic component consequently, the evolution operator (generator) for the probability density in configuration space is evaluated recalling previous work by the same author, by stochastically averaging the flux of particles. The averages depend upon the history of the system, but memory may be eliminated by suitably defining the drift, in the limit of large time. The fundamental solution of the diffusion equation is recast into the form of a Feynman path integral, and subsequently transformed into an Onsager–Machlup path integral, whose regressive stationary solutions satisfy the minimum entropy production principle. It is focused upon the role played by the appropriate definition of drift velocity adopted in this approach, allowing for interpretation of the Onsager–Machlup potential
Czasopismo
Rocznik
Tom
Strony
177--177
Opis fizyczny
–-206, Bibliogr. 42 poz.
Twórcy
autor
Bibliografia
- 1. M. Battezzati, A new derivation of a Schroedinger-type equation for dissipative systems, Nuovo Cimento, 50B, 7–16, 1979.
- 2. M. Battezzati, Stationary action principle for dissipative systems with variable frictional forces, Nuovo Cimento, 125B, 333–345, 2010.
- 3. L. Landau, E. Lifchitz, Physique Statistique, Ch. XII, Mir, Moscow 1967.
- 4. H.B. Callen, T.A. Welton, Irreversibility and generalized noise, Phys. Rev., 83, 34–40, 1951.
- 5. H.B. Callen, R.F. Greene, On a theorem of irreversible thermodynamics, Phys. Rev., 86, 702–710, 1952.
- 6. G.E. Uhlenbeck, L.S. Ornstein, On the theory of the Brownian motion, Phys. Rev., 36, 823–841, 1930.
- 7. Ming Chen Wang, G.E. Uhlenbeck, On the theory of the Brownian Motion II, Rev. Mod. Phys., 17, 323–342, 1945.
- 8. M. Battezzati, The diffusion equation for a classical mechanical system in a nonlinear force field: an improved treatment, Phys. Lett., A172, 119–126, 1992.
- 9. M. Battezzati, The diffusion equation for a mechanical system in the high-friction limit, Chem. Phys. Lett., 216, 585–592, 1993.
- 10. M. Battezzati, The expansion of the configurational diffusion equation in inverse powers of the frictional constant: Further progress in the calculation of coefficients by functional integral methods, Nuovo Cimento, 110B, 1287–1306, 1995,
- 11. M. Battezzati, The evolution of probability density in configuration space according to stochastic equations of motion, Trends Chem. Phys., 4, 167–190, 1996.
- 12. L. Onsager, S. Machlup, Fluctuations and irreversible processes, Phys. Rev., 91, 1505–1512, 1953.
- 13. S. Machlup, L. Onsager, Fluctuations and irreversible processes II: Systems with kinetic energy, Phys. Rev., 91, 1512–1515.
- 14. R. Feynman, A. Hibbs, Quantum mechanics and path integrals, Ch. 2, McGraw-Hill, New York 1965.
- 15. B.H. Lavenda, Path integral formulation of nonequilibrium statistical mechanics, Rivista Nuovo Cimento, 7, 229–276, 1977.
- 16. F.W. Wiegel, Path integral for a class of nonlinear Fokker-Planck processes, Physica, 33, 734–736, 1967.
- 17. H. Haken, Generalized Onsager–Machlup function and classes of path integral solutions of the Fokker–Planck equation and the master equation, Z. Physik, B24, 321–326, 1976.
- 18. R. Graham, Path integral formulation of general diffusion processes, Z. Physik, B26, 281-290 (1977)
- 19. B.H. Lavenda, On the validity of the Onsager–Machlup postulate for nonlinear stochastic processes, Found. Phys., 9, 405–420, 1979.
- 20. B.H. Lavenda, E. Santamato, Thermodynamic criteria governing irreversible processes under the influence of small thermal fluctuations, J. Stat. Phys., 29, 345–361, 1982.
- 21. S.I. Serdyukov, V.K. Bel’nov, Extension of the variational formulation of the Onsager–Machlup theory of fluctuations, Phys.Rev., E51, 4190–4195, 1995.
- 22. M. Roncadelli, New path integral representation of the quantum mechanical propagator, J. Phys. A: Math. Gen., 25, L997–L1000, 1992.
- 23. H. Simanjuntak, L. Gunther, Nonstochastic Langevin equation and the arrow of time, Physica, 147A, 487–498, 1988.
- 24. R.F. Fox, Gaussian stochastic processes in physics, Phys. Rept., 48, 179–283, 1978. 206 M. Battezzati
- 25. P. Haenggi, Correlation functions and masterequations of generalized (non-Markovian) Langevin equations, Z. Physik, B31, 407–416, 1978.
- 26. K. Yasue, Quantum mechanics of nonconservative systems, Ann. Phys. (N.Y.), 114, 479–496, 1978.
- 27. A.H. Gray, Uniqueness of steady-state solutions to the Fokker–Planck equation, J. Math. Phys., 6, 644–647, 1965.
- 28. L. Onsager, Reciprocal relations in irreversible processes, Phys. Rev., 38, 2265–2279, 1931.
- 29. R.F. Fox, The generalized Langevin equation with Gaussian fluctuations, J. Math. Phys., 16, 2331–2335, 1977.
- 30. M. Battezzati, Diffusion in configuration space according to the choice of the solution of the Hamilton–Jacobi–Yasue equation and the role of boundary conditions, J. Chem. Phys., 105, 6525–6531, 1996.
- 31. G. Wilemski, On the derivation of Smoluchovski equations with corrections in the classical theory of Brownian motion, J. Stat. Phys., 14, 153–169, 1976.
- 32. L. Arnold, Stochastic differential equations, Ch. 1, John Wiley & Sons, New York 1974.
- 33. L. Schwartz, Méthodes Mathématiques pour les Sciences Physiques, Ch. II, 4, Hermann, Paris 1965.
- 34. M. Kac, Wiener and integration in function spaces, Bull. Amer. Math. Soc., 72, 52–68, 1966.
- 35. J.M.C. Clark, R.J. Cameron, The maximum rate of convergence of discrete approximations for stochastic differential equations, Lecture Notes in Control and Information Sci., 25, 162–171, 1980.
- 36. M. Fisz, Probability Theory and Mathematical Statistics, Ch. 8, John Wiley & Sons, New York 1965.
- 37. V. Smirnov, Cours de Mathématiques Supérieures, Tome IV, deuxième partie, Ch. 1, Mir, Moscow 1984.
- 38. D.J. Wright, The digital simulation of stochastic differential equations, IEEE Trans. Automatic Control, AC-19, 75–76, 1974.
- 39. S.A. Adelman, B.J. Garrison, Non-Markovian diffusion and the Fokker–Planck equation for Brownian oscillators, Mol. Phys., 33, 1671–1681, 1977.
- 40. E.A. Novikov, Functionals and the random-force method in turbulence theory, Soviet Phys. JETP, 20, 1290–1294, 1965.
- 41. V.S. Volkov, V.N. Pokrovski, Generalized Fokker–Planck equation for non-Markovian processes, J. Math. Phys., 24, 257–270, 1983.
- 42. U.M. Titulaer, A systematic solution procedure for the Fokker–Planck equation of a Brownian particle in the high-friction case, Physica, 91A, 321–344, 1978.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0010-0027