PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compliance minimization of thin plates made of material with predefined Kelvin moduli. Part II. The effective boundary value problem and exemplary solutions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The compliance minimization of transversely homogeneous plates with predefined Kelvin moduli leads to the equilibrium problem of an effective hyperelastic plate with the hyperelastic potential expressed explicitly in terms of both the membrane and bending strain measures, as derived in Part I of the present paper. The aim of this second part of the paper is to show convexity of this potential and, consequently, uniqueness of solutions of the minimum compliance problem considered. Theoretical results are illustrated by numerically calculated optimal trajectories of the eigenstate corresponding to the largest Kelvin modulus.
Rocznik
Strony
137--137
Opis fizyczny
–-152, Bibliogr. 8 poz.
Twórcy
Bibliografia
  • 1. A. Blinowski, J. Ostrowska-Maciejewska, J. Rychlewski, Two-dimensional Hooke’s tensors-isotropic decomposition, effective symmetry criteria, Arch. Mech., 48, 325–345, 1996.
  • 2. S. Czarnecki, T. Lewiński, The stiffest designs of elastic plates. Vector optimization for two loading conditions, Comp. Meth. Appl. Mech. Engrg., 200, 1708–1728, 2011.
  • 3. G. Dzierżanowski, T. Lewiński, Compliance minimization of thin plates made of material with predefined Kelvin moduli. Part I. Solving the local optimization problem, Arch. Mech., 64, 21–40, 2012.
  • 4. I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North Holland, Amsterdam, 1976.
  • 5. G.J. Minty, On the monotonicity of the gradient of a convex function, Pac. J. Math., 14, 243–247, 1964.
  • 6. P.M. Naghdi, Foundations of elastic shell theory, [in:] Progress in Solid Mechanics vol. IV, I.N. Sneddon, R. Hill (Eds.), North-Holland, Amsterdam, 1963.
  • 7. R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
  • 8. J. Rychlewski, On Hooke’s Law, Prikl. Mat. Mech., 48, 420–435, 1984 [in Russian].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0010-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.