PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Modeling of the propagation and evolution of nonlinear waves in a wave train

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A theoretical approach is applied to predict the propagation and evolution of nonlinear water waves in a wave train. A semi-analytical solution was derived by applying an eigenfunction expansion method. The solution is applied to study the evolution of nonlinear waves in a wave train and the formation of freak waves. The analysis focuses on the changes of wave profile and wave spectrum due to the interaction of wave components in a wave train. The results indicate that for waves of very low steepness, the changes of wave profile and wave spectrum are of secondary importance and weakly nonlinear wave theories can be applied to describe wave propagation in a wave train. For waves of low and moderate steepness, the nonlinear terms in the free-surface boundary conditions are becoming more and more important and weakly nonlinear wave theories cannot be applied to describe substantial changes in wave profile. A train of basically sinusoidal waves may drastically change its form within a relatively short distance from its original position and freak waves are often formed. The interaction between waves in a wave train and significant wave evolution has substantial effects on a wave spectrum. A train of initially very narrow-banded spectrum changes its simple one-peak spectrum to a broad-banded and often multi-peak spectrum in a fairly short period of time. The analysis shows that these phenomena cannot be described properly by the nonlinear Schrödinger equation or its modifications. Laboratory experiments were conducted in a wave flume to verify theoretical approaches. The free-surface elevation recorded by a system of wave gauges was compared with the results provided by the semi-analytical solution. Theoretical results are in a fairly good agreement with experimental data. A reasonable agreement between theoretical results and experimental data is observed, even for complex changes of long wave trains.
Rocznik
Strony
311--311
Opis fizyczny
–-335, Bibliogr. 33 poz.
Twórcy
autor
autor
  • Department of Wave Mechanics and Structural Dynamics Institute of Hydroengineering Polish Academy of Sciences Kościerska 7 80-328 Gdańsk, Poland, sulisz@ibwpan.gda.pl
Bibliografia
  • 1. G.R. Baker, D.I. Meiron, S.A. Orszag, Generalized vortex methods for free-surface flow problems, Journal of Fluid Mechanics, 123, 477–501, 1982.
  • 2. W.J.D. Bateman, C. Swan, P.H. Taylor, On the efficient numerical simulation of directionally spread surface water waves, Journal of Computational Physics, 174, 277– 305, 2001.
  • 3. T.B. Benjamin, J.E. Feir, The disintegration of wave trains on deep water. Part 1. Theory, Journal of Fluid Mechanics, 27, 417–430, 1967.
  • 4. D. Clamond, M. Francius, J. Grue, C Kharif, Long time interaction of envelope solitons and freak wave formations, European Journal of Mechanics B/Fluids, 25, 536–553, 2006.
  • 5. W. Craig, U. Schanz, C. Sulem, The modulation limit of three-dimensional water waves, and the Davey–Stewartson system Annales de. 1’IHP: Analyse Nonlineaire, 14, 615, 1997.
  • 6. W. Craig, C. Sulem, Numerical simulation of gravity waves, Journal of Computational Physics, 108, 73–83, 1993.
  • 7. R.G. Dean, R.T. Dalrymple, Water wave mechanics for engineers and scientists. Prentice-Hall, Inc., 1984.
  • 8. D.G. Dommermuth, D.K.P. Yue, High-order spectral method for the study of nonlinear gravity waves, Journal of Fluid Mechanics, 184, 267–288, 1987.
  • 9. J.D. Fenton, Numerical methods for nonlinear waves, [in:] Advances in Coastal and Ocean Engineering, Vol. 5, P.L.-F. Liu [Ed.], World Scientific.
  • 10. R.H. Gibbs, P.H. Taylor, Formation of walls of water in ‘fully’ nonlinear simulations, Applied Ocean Research, 16, 101–112, 2005.
  • 11. K.L. Henderson, D.H. Peregrine, J.W. Dold, Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation, Wave Motion, 29, 341–361, 1999.
  • 12. R.T. Hudspeth, W. Sulisz, Stokes drift in 2-D wave flumes, Journal of Fluid Mechanics, 230, 209–229, 1991.
  • 13. L.V. Kantorovich, V.I. Krilov, Approximate Methods of Higher Analysis, P. Noordhoff Ltd., Groningen, The Netherlands, 1958.
  • 14. C. Kharif, E. Pelinovsky, Physical mechanisms of the rogue wave phenomenon, European Journal of Mechanics B/Fluids, 22, 603–634, 2003.
  • 15. J.W. Kim, R.C. Ertekin, A numerical study of nonlinear wave interaction in regular and irregular seas: irrotational Green–Naghdi model, Marine Structures, 13, 331–347, 2000.
  • 16. B. Kinsman, Wind Waves, Prentice-Hall, Inc., Englewood Cliffs, New Jersey 1965.
  • 17. J. Larsen, H. Dancy, Open boundaries in short wave simulations – a new approach, Coastal Engineering, 7, 285–297, 1983.
  • 18. P.L.-F. Liu [Ed.], Advances in Coastal and Ocean Engineering, Vol. 5, World Scientific, 1999.
  • 19. M.S. Longuett-Higgins, M.J.H. Fox, Theory of the almost highest wave II: matching and analytic extensions, Journal of Fluid Mechanics, 85, 769–786, 1978.
  • 20. O. Mahrenholtz, M. Markiewicz [Eds.], Nonlinear Water Wave Interaction, Advances in Fluid Mechanics, 24, WIT Press, 1999.
  • 21. P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Mc-Graw Hill, 1953.
  • 22. D.P. Nicholls, Traveling water waves: Spectral continuation methods with paralel implementation, Journal of Computational Physics, 143, 224, 1998.
  • 23. W.H. Press, B. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes. Cambridge University Press, Cambridge, 1988.
  • 24. L.W. Schwartz, Computer extension and analytic continuation of Stokes’ expansion for gravity waves, Journal of Fluid Mechanics, 62, 553–578, 1974.
  • 25. W. Sulisz, R.T. Hudspeth, Complete secondorder solution for water waves generated in wave flumes, Journal of Fluids and Structures, 7, 3, 253–268, 1993.
  • 26. W. Sulisz, M. Paprota, Modeling of the propagation of transient waves of moderate steepness, Applied Ocean Research, 26, 137–146, 2004.
  • 27. W. Sulisz, M. Paprota, Generation and propagation of transient nonlinear waves in a wave flume, Coastal Engineering, 55, 4, 277–287, 2008.
  • 28. M. Tanaka, A method of studying nonlinear random field of surface gravity waves by direct numerical simulation, Fluid Dynamics Research, 28, 41–60, 2001.
  • 29. T. Vinje, P. Brevig, Numerical simulation of breaking waves, Advances in Water Resources, 4, 77–82, 1981.
  • 30. K.M. Watson, B.J. West, A transport-equation description of nonlinear ocean surface wave interactions, Journal of Fluid Mechanics, 70, 815–826, 1975.
  • 31. J.V. Wehausen, Surface Waves, [in:] Handbuch der Physik, 9, Springer-Verlag, Berlin, 446–778, 1960.
  • 32. B.J. West, K.A. Brueckner, R.S. Janda, A new numerical method for surface hydrodynamics, Journal of Geophysical Research, 92, 11803–11824, 1987.
  • 33. H.C. Yuen, B.M. Lake, Nonlinear dynamics of deep-water gravity waves. Academic Press, New York 1982.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0010-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.