PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybrid RANS/LES computation of plane impinging jet flow

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flow characteristics are presented of simulation results of plane impinging jets at high nozzle-plate distances, with two k-? based hybrid RANS/LES (Reynolds Averaged Navier–Stokes/Large–Eddy Simulation) models and a k-? RANS model. The first hybrid RANS/LES model is obtained by substitution of the turbulent length scale by the local grid size in the destruction term of the turbulent kinetic energy equation and in the definition of the eddy-viscosity. The second hybrid model is obtained by a latency factor in the definition of the eddy-viscosity. The RANS model overpredicts the length of the jet core region, caused by too weak turbulent mixing in the shear layers of the jet. This results in erroneous near-wall shear stress along the impingement plate. The hybrid RANS/LES models overcome the deficiency of the RANS model. Further, the hybrid models represent the flow with much more detail. For instance, the Görtler vortices are well reproduced in the stagnation flow region by the hybrid RANS/LES models.
Rocznik
Strony
117--117
Opis fizyczny
–-136, Bibliogr. 27 poz.
Twórcy
autor
autor
autor
Bibliografia
  • 1. M. Dianat, M. Fairweather, W.P. Jones, Predictions of axisymmetric and two-dimensional impinging turbulent jets, Int. J. Heat and Fluid Flow, 17, 530–538, 1996.
  • 2. J. Fröhlich, D. von Terzi, Hybrid LES/RANS methods for the simulation of turbulent flows, Progress in Aerospace Sciences, 44, 349–377, 2008.
  • 3. P. Sagaut, S. Deck, M. Terracol, Multiscale and multiresolution approaches in turbulence, Imperial College Press, London, 2006.
  • 4. D.C. Wilcox, Formulation of the k-! turbulence model revisited, AIAA Journal, 46, 11, 2823–2837, 2008.
  • 5. L. Davidson, S.H. Peng, Hybrid LES-RANS modelling: a one-equation SGS model combined with a k–! model for predicting recirculating flows, Int. J. Numer. Meth. Fluids, 43, 1003–1018, 2003.
  • 6. J.C. Kok, H. Dol, H. Oskam, H. van der Ven, Extra-large eddy simulation of massively separated flows, AIAA Paper 2004–2064, 2004.
  • 7. J. Yan, C. Mockett, F. Thiele, Investigation of alternative length scale substitutions in detached-eddy simulation, Flow, Turbulence and Combustion, 74, 85–102, 2005.
  • 8. A. Yoshizawa, Bridging between eddy-viscosity-type and second-order turbulence models through a two-scale turbulence theory, Physical Review E, 48, 1, 273–281, 1993.
  • 9. P. Batten, U. Goldberg, S. Chakravarthy, Interfacing statistical turbulence closures with large-eddy simulation, AIAA Journal, 42, 3, 485–492, 2004.
  • 10. J.-C. Magnient, P. Sagaut, M. Deville, A study of built-in filter for some Eddy viscosity models in large eddy simulation, Physics of Fluids, 13, 1440–1449, 2001.
  • 11. C. de Langhe, B. Merci, E. Dick, Hybrid RANS/LES modelling with an approximate renormalization group. I: model development, J. of Turbulence, 6, 13, 1–18, 2005.
  • 12. P.R. Spalart, W.-H. Jou, M. Strelets, S.R. Allmaras, Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach, [in:] Advances in DNS/LES, C. Liu, Z. Liu [Eds.], Colombus OH, Greyden Press, 137–147, 1997.
  • 13. A. Travin, M. Shur, M. Strelets, P. Spalart, Detached-Eddy Simulations Pasta Circular Cylinder, Flow, Turbulence and Combustion, 63, 293–313, 1999.
  • 14. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, 32, 1598–1605, 1994.
  • 15. M. Tsubokura, T. Kobayashi, N. Taniguchi, W.P. Jones, A numerical study on the eddy structures of impinging jets exited at the inlet, Int. J. Heat and Fluid Flow, 24, 500–511, 2003.
  • 16. S. Ashforth-Frost, K. Jambunathan, C.F. Whitney, Velocity and turbulence characteristics of a semiconfined orthogonally impinging slot jet, Experimental Thermal and Fluid Science, 14, 60–67, 1997.
  • 17. J. Zhe, V. Modi, Near wall measurements for a turbulent impinging slot jet, Trans. of the ASME, J. Fluid Eng., 123, 112–120, 2001.
  • 18. S. Maurel, C. Solliec, A turbulent plane jet impinging nearby and far from a flat plate, Exper. in Fluids, 31, 687–696, 2001.
  • 19. J.E. Jaramillo, C.D. Perez-Segarra, I. Rodriguez, A. Oliva, Numerical study of plane and round impinging jets using RANS models, Numer. Heat Transfer Part B, 54, 213–237, 2008.
  • 20. F. Mathey, D. Cokljat, J.P. Bertoglio, E. Sergent, Assessment of the Hortex method for Large Eddy Simulation inlet conditions, Progress Comput. Fluid Dynamics, 6, 58–67, 2006.
  • 21. S.B. Pope, Turbulent Flows, Cambridge Univ. Press, New York 2000.
  • 22. F. Beaubert, S. Viazzo, Large eddy simulation of a plane impinging jet, C.R. Mécanique, 330, 803–810, 2002.
  • 23. C.V. Tu, D.H. Wood, Wall pressure and shear stress measurements beneath an impinging jet, Experimental Thermal and Fluid Science, 13, 364–373, 1996.
  • 24. J.A. Fernandez, J.C. Elicer-Cortes, A. Valencia, M. Pavageau, S. Gupta, Comparison of low-cost two-equation turbulence models for prediction of flow dynamics In twin-jets devices, Int. Comm. Heat Mass Transfer, 34, 570–578, 2007.
  • 25. S. Kubacki, E. Dick, Convective heat transfer prediction for an axisymmetric jet impinging onto a flat plate with an improved k-! model, Int. J. Numer. Methods in Heat and Fluid Flow, 19, 960–981, 2009.
  • 26. U. Piomelli, S. Radhakrishnan, G. de Prisco, Turbulent eddies in the RANS/LES transition region. In Advances in Hybrid RANS-LES Modelling, Eds. Peng S.-H. and Haase W., Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 97, Springer, ISBN 978-3-540-77813-4, 21–36, 2008.
  • 27. P.R. Spalart, Detached-Eddy Simulation, Ann. Rev. Fluid Mech., 41, 181–202, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0010-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.