PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modelling of plasma formation during nanosecond laser ablation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The interaction of laser beam with a target and next with the evaporated material is studied theoretically. In the case of a nanosecond laser pulse with 1064 nm wavelength, the ablation is thermal and therefore the interaction of the laser beam with a target is studied with the use of thermal model. The model which describes both the target heating, formation of the plasma and its expansion consists of equations of conservation of mass, momentum and energy and is solved with the use of Fluent software package. The calculations show a sharp increase of the plume temperature and pressure after plasma formation and following it, a considerable increase of the velocity of plasma plume. Maximum plasma pressure of 2 ×108 Pa, temperature of 61 500 K and front velocity of 3.8 × 104 m ź s-1 have been found. The results show that the Mie absorption cannot be neglected in the phase of plasma formation. The shape of the plume and plasma front velocity obtained from the model are close to that observed in the experiment carried out in similar conditions.
Słowa kluczowe
Rocznik
Strony
99--99
Opis fizyczny
–-116, Bibliogr. 23 poz.
Twórcy
autor
autor
  • Institute of Fundamental Technological Research Polish Academy of Science Pawińskiego 5B 02-106 Warszawa, Poland, tmosc@ippt.gov.pl
Bibliografia
  • 1. D Bäuerle, Laser Processing and Chemistry, Springer-Verlag, Berlin 1996.
  • 2. V.I Mazhukin, V.V. Nossov, M.G. Nickiforov, I. Smurov, Optical breakdown In aluminium vapor induced by ultraviolet laser radiation, J. Appl. Phys., 93, 56–66, 2003.
  • 3. R.K. Singh, J. Narayan, Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model, Phys. Rev. B, 41, 8843–8859, 1990.
  • 4. K.R. Chen, T.C. King, J.H. Hes, J.N. Leboeuf, D.B. Geohegan, B.R.F. Wood, A.A. Puretzky, J.M. Donato, Theory and numerical modeling of the accelerated expansion of laser-ablated materials near a solid surface, Phys. Rev. B, 60, 8373–8382, 1999.
  • 5. T. Nedelea, H.M. Urbassek, Particle-in-cell simulation of the pulsed planar expansion of a fully ionized plasma off a surface, Phys. Plasmas, 9, 3209–3216, 2002.
  • 6. X. Tan, D. Zhang, X. Li, Z. Li, R. Fang, A new model for studying the plasma plume expansion property during nanosecond pulsed laser deposition, J. Phys. D: Appl. Phys., 41, 035210, 2008.
  • 7. Zh. Chen, A. Bogaerts, Laser ablation of Cu and plume expansion into 1 atm ambitne gas, J. Appl. Phys., 97, 063305, 2005.
  • 8. V.I. Mazhukin, V.V. Nossov, I. Smurov, Modeling of plasma-controlled evaporation and surface condensation of Al induced by 1.06 and 0.248 m laser radiations, J. Appl. Phys., 101, 024922, 2007.
  • 9. C.J. Knight, Theoretical modelling of rapid surface vaporization with back pressure, AIAA J., 17, 519–523, 1979.
  • 10. FLUENT 6.3. User’s Guide.
  • 11. N.M. Bulgakova, A. Bulgakov, L.P. Babich, Energy balance of pulsed laser ablation: thermal model revised, Appl. Phys. A, 79, 1323–1326, 2004.
  • 12. K.C. Mills, Recommended values of thermophysical properties for selected commercial alloys, National Physical Laboratory, 2002, UK.
  • 13. J. Richter, Radiation of hot gases, [in:] Plasma Diagnostics, W. Lochte-Holtgreven [Ed.], North Holland, Amsterdam 1968.
  • 14. F. Cabannes, J.C. Chapelle, Reactions Under Plasma Conditions, M. Venugopalan [Ed.], Wiley-Interscience, New York 1971.
  • 15. J.M. Berger, Absorption coefficients for free-free transitions in a hydrogen plasma, Astrophys. J., 124, 550–554, 1956.
  • 16. G. Weyl, A. Pirri, R. Root, Laser ignition of plasma off aluminium surfaces, AIAA J., 19, 460–469, 1981.
  • 17. H.C. van de Hulst, Light Scattering by Small Particles, Dover Publications, New York 1981.
  • 18. L.A. Akashev, V.I. Kononenko, Optical Properties of Liquid Aluminium and Al-Ce Alloy, High Temperature, 39, 3, 384–387, 2001.
  • 19. R. Rozman, I. Grabec, E. Govekar, Influence of absorption mechanisms on laser- induced plasma plume, Appl. Surf. Sci., 254, 3295–3305, 2008.
  • 20. H.W. Drawin, P. Felenbock, Data for Plasmas in Local Thermodynamic Equilibrium, Gauthier-Villars, Paris 1965.
  • 21. S.S. Harilal, M.S. Tillack, B. O’Shay, C.V. Bindhu, F. Najmabadi, Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field, Phys. Rev., 69, 026413, 2004.
  • 22. A.K. Sharma, R.K. Thareja, Plume dynamics of laser-produced aluminum plasma In ambient nitrogen, Appl. Surf. Sci., 243, 68–75, 2005.
  • 23. C. Ursu, S. Gurlui, C. Focsa, G. Popa, Space- and time-resolved optical diagnosis for the study of laser ablation plasma dynamics, Nucl. Instr. & Methods Phys. Res. B, 267, 446–450, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0010-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.